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Motivations and goals

@ In heavenly spaces with A = 0 and in hyperheavenly spaces ten
Killing equations were reduced to single master equation. Such
reduction in heavenly spaces with A # 0 was unknown.
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Motivations and goals

@ In heavenly spaces with A = 0 and in hyperheavenly spaces ten
Killing equations were reduced to single master equation. Such
reduction in heavenly spaces with A # 0 was unknown.

@ What is the simplest form of the metric and the form of the reduced
heavenly equation for the complex ASD spaces with A admitting a
nonnull Killing vector?
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Motivations and goals

@ In heavenly spaces with A = 0 and in hyperheavenly spaces ten
Killing equations were reduced to single master equation. Such
reduction in heavenly spaces with A # 0 was unknown.

@ What is the simplest form of the metric and the form of the reduced
heavenly equation for the complex ASD spaces with A admitting a
nonnull Killing vector?

@ How to obtain all real slices of this complex metric?
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Self-dual null strings

@ 2-dimensional holomorphic distribution D = {pavy, papy,t

yMpM # 0 is integrable in the Frobenius sense if spinor p 4 satisfies
the equations

1Pu Vg ine =0
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Self-dual null strings

@ 2-dimensional holomorphic distribution D = {pavy, papy,t

yMpM # 0 is integrable in the Frobenius sense if spinor p 4 satisfies
the equations

1Pu Vg ine =0
o Integral manifolds of distribution D are called self-dual null strings

(SD null strings) and they constitute the congruence of self-dual null
strings.
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Self-dual null strings

@ 2-dimensional holomorphic distribution D = {pavy, papy,t
vy p™ # 0 is integrable in the Frobenius sense if spinor 4 satisfies
the equations

1Pu Vg ine =0

o Integral manifolds of distribution D are called self-dual null strings
(SD null strings) and they constitute the congruence of self-dual null
strings.

@ There are two essentially different types of the congruences of the

null strings: expanding and nonexpanding. Nonexpanding case
corresponds to the null strings which are parallely propagated.
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Self-dual null strings

@ In Einstein spaces the existence of the SD null strings implies that
the SD Weyl tensor C'apcp is algebraically degenerated and spinor
14 is the undotted multiple Penrose spinor.

Capepp 1P =0
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Self-dual null strings

@ In Einstein spaces the existence of the SD null strings implies that
the SD Weyl tensor C'apcp is algebraically degenerated and spinor
14 is the undotted multiple Penrose spinor.

Capepp 1P =0

@ The number of independent congruences of the SD null strings is
equal to the number of multiple undotted Penrose spinors.
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Self-dual null strings

@ In Einstein spaces the existence of the SD null strings implies that
the SD Weyl tensor C'apcp is algebraically degenerated and spinor
14 is the undotted multiple Penrose spinor.

Capepp 1P =0

@ The number of independent congruences of the SD null strings is
equal to the number of multiple undotted Penrose spinors.

@ There are infinitely many independent congruences of SD null
strings in the ASD Einstein spaces. Moreover, if A # 0, all of them
are expanding.
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Definitions of heavenly sp

Definition (Heavenly space)

‘H-space with cosmological constant A is a 4 - dimensional complex
analytic differential manifold endowed with a holomorphic Riemannian
metric ds? satisfying the vacuum Einstein equations with A,

Rap = —Agap, A # 0, and such that the SD or ASD part of the Weyl!
tensor vanishes.

In what follows we assume that Cspcp = 0 so we deal with ASD
Einstein spaces with A (left-flat heavenly spaces).
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Heavenly spaces in Pleba

@ The metric of the ASD, Einstein space with A can be locally
brought to the form

- B A
ds? = ) 2{27 1(dndw — dodt) + 2 (— ¢ Wy + @)dtz

+4 (W, — ¢ Wyg) dwdt +2 (2 Wy — ¢ W) dw2}
where (¢, n,w,t) are Plebariski - Robinson coordinates and the

complex constant parameter 7 can be chosen as convenient.
W =W (p,n,w,t) is the key function.
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Heavenly spaces in Plebans

@ The metric of the ASD, Einstein space with A can be locally
brought to the form

oo A
ds® = ¢ 2{27 1(dndw—d¢dt)+2< O W + = 2)dt2

+4 (W, — ¢ Wyg) dwdt +2 (2 Wy — ¢ W) dw2}
where (¢, n,w,t) are Plebariski - Robinson coordinates and the

complex constant parameter 7 can be chosen as convenient.
W =W (p,n,w,t) is the key function.

o Einstein equations can be reduced to heavenly equation with A
WinWeg = WygWag + 207 Wy We — 2671
+(ro)~ ( wn T Wt¢)

7777

&3 1W¢¢—0
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Killing equations

@ In ASD Einstein spaces with A # 0 and C 5. # 0 proper
homothetic and proper conformal Killing symmetries are not allowed.
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Killing equations

@ In ASD Einstein spaces with A # 0 and C 5. # 0 proper
homothetic and proper conformal Killing symmetries are not allowed.

@ Spinorial Killing equations read

(Bg- D) _ NN _
V(A KC) =0, V''Kyy=
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Invariant which charac

o Any Killing vector can be characterized by the invariant [ := 4 gl45
where spinor [ 45 is defined by the relation

1 .
lap = §V(ANKB)N
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Invariant which charact

o Any Killing vector can be characterized by the invariant [ := 4 gl45
where spinor [ 45 is defined by the relation

1 .
lap == §V(ANKB)N
@ It can be proved, that in ASD Einstein spaces with A # 0

| = 0 <= Killing vector is null
| # 0 < Killing vector is nonnull
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The master equation

Ten Killing equations in ASD Einstein spaces with A can be reduced to
one equation called the master equation. Unfortunately, this equation is
much more complicated then the similar equation in hyperheavenly spaces.

Why?
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Killing equations

How to use the heavenly structure?

Heavenly spaces with A and nonnull Killing vector

What is the best way t

@ There are infinitely many congruences of SD null strings. Which one
should we choose?
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What is the best way to

@ There are infinitely many congruences of SD null strings. Which one
should we choose?

@ Decomposing spinor l4p according to the formula l4p = manp,
one finds, that both m 4 and n 4 satisfy the null string equations.
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What is the best way to u

@ There are infinitely many congruences of SD null strings. Which one
should we choose?

@ Decomposing spinor [ 4p according to the formula l4p = manp,
one finds, that both m 4 and n 4 satisfy the null string equations.

@ Then the best choice is to use the congruence of the null strings
generated by the spinor m4. The complex spinor transformation
allows to set I;; = 0.
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@ Any nonnull Killing vector can be brought to the form K = 0,

@ From the master equation it follows, that the key function becomes
the function of three variables W = W (¢, n, w).

The metric takes the form
ds? = (;5_2{27'_1(d17d’u} — dedt) +2 ( — O Wiy + é%)dt?
+4 (W, — ¢ W) dwdt +2 (2 Wy — ¢ W) duﬂ}
Heavenly equation with A reduces to the equation

WnnW¢¢ - Wn¢Wn¢ + 2¢71Wan¢ - 2¢71W¢Wnn

+(7¢) " Wiy — “MWye =0

672
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Metric in LeBrun form (Le

In new coordinate system (X,Y, Z,T) the Killing vector has the form
K = 0z and the metric can be locally brought to the form

v
2 _ 2 2 2\
ds T2< (dX dY)~|—dT) VTQ(dZ+a)
where 3T 5
— _ T —
V=St

and the 1-form « fulfills the equation
2
—gAda = (eV)rdX ANdY —TdX AdUy +TdUx AdY

Heavenly equation with A can be brought to the Boyer - Finley -
Plebanski equation for U = U(T, X,Y)
(") rr +Uxx —Uyy =0
Invariant, which characterizes the Killing vector reads
LaplAP = =285 40,
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Metric in the Y-formal

Changing the coordinates (T, X,Y, Z) — (o, ¢, &, v) according to the
formulas

Z:_Qv TZ@? Y:é-—?}, X:—g—’l)
and using the potential ¥ defined by the relation
U=:In¥,

we arrive to the alternate form of the metric:
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Metric in the Y-formalis

In coordinates (¢, z, 0, v) the Killing vector is K = 0, and the metric can
be locally brought to the form

2 2A X% 4.0
2_,2) _ =2 __5 228
ds* = { ngodg 577 Q¢ do® +T QE dvdp
EEfQid 2 _
A Qe

%Q depdv — Qg d{d’u}

where

Q=28 -3, , Q#0
Heavenly equation with A takes the form

Yy + Nedpp =0

Adam Chudecki
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Real neutral slices

@ In neutral signature the spinor [ 4 is real

lap = lan
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Real neutral slices

@ In neutral signature the spinor [ 4 is real
lap =lap
@ Using decomposition [ap = m(4np) we obtain two solutions:
4B <0
2) ma and ny are complex: my = £y — Lagl?® >0

1) ms and ng are real = lap
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Real neutral slices

@ In neutral signature the spinor [ 4 is real
lap =lap
@ Using decomposition [ap = m(4np) we obtain two solutions:
4B <0
2) ma and ny are complex: my = £y — Lagl?® >0

1) ms and ng are real = lap

@ The first case can be obtained from the complex metric in LeBrun
form by direct real slice
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Real neutral slices

@ In neutral signature the spinor [ 4 is real
lap =lap
@ Using decomposition [ap = m(4np) we obtain two solutions:
4B <0
2) ma and ny are complex: my = £y — Lagl?® >0

1) ms and ng are real = lap

@ The first case can be obtained from the complex metric in LeBrun
form by direct real slice

@ There are no real null strings related to the Killing vector in the
second case
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Real neutral slices

@ In neutral signature the spinor [ 4 is real
lap =lap
@ Using decomposition [ap = m(4np) we obtain two solutions:
4B <0
2) ma and ny are complex: my = £y — Lagl?® >0

1) ms and ng are real = lap

@ The first case can be obtained from the complex metric in LeBrun
form by direct real slice

@ There are no real null strings related to the Killing vector in the
second case

@ Solution: to perform the complex transformation of the coordinates,
namely T — iT, Y — iY and then take the real slice of obtained
complex metric
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Real neutral slices (Hogne

For the real ASD Einstein spaces in neutral (+ + ——) signature with
A # 0 admitting nonnull Killing vector K = 0, we obtained

1

Ve (dz + a)?

Vv
ds® = el (eU (da* + dy?) F dtz)
where
tU; — 2

=4+
v 2A

and the 1-form « satisfies
20 da = (eY); dx ANdy — tdx A dU, F tdU, A dy
The function U satisfies BFP equation
(€")et F Usa — Uyy =0

Moreover
o case [4pl*P > 0 corresponds to the upper signs

o case I4pl*P < 0 corresponds to the lower signs
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Real Euclidean slice

o In Euclidean signature (+ + ++) there are no congruences of null
strings
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Real Euclidean slices

o In Euclidean signature (+ + ++) there are no congruences of null
strings

@ Solution: to perform the complex transformation of the coordinates,
namely T — iT, X — iX and then take the real slice of obtained
complex metric
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Real Euclidean slices (Prz

For the real ASD Einstein spaces in Euclidean (+ + ++) signature with
A # 0 admitting nonnull Killing vector K = 9, we obtained

V 1
2 U2 2 2 2
ds _tQ(e (dz +dy)+dt)+ t2(dz+o¢)

where
Uy =2

v 4A

and the 1-form « satisfies
—4Ada = (Y) dx A dy + tdx A dU, + tdU, A dy
The function U satisfies BFP equation

(eU)tt + Ugs + Uyy =0
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Real Lorentzian slic

o Lorentzian slices exist only if Capcp = Clipep

Adam Chudecki All ASD complex and real 4-dimensional Einstein spaces with A 7 0 admi



Real neutral slices
Real Euclidean slices
Real Lorentzian slices
Conclusions

Real Lorentzian slices

o Lorentzian slices exist only if Capcp = Cligep

@ The only Lorentzian slices which can be obtained from the
considered metrics after setting C; 5., = 0 are de-Sitter metrics.
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Real Lorentzian slices

o Lorentzian slices exist only if Capcp = Cligep
@ The only Lorentzian slices which can be obtained from the
considered metrics after setting C; 5., = 0 are de-Sitter metrics.

@ To obtain complex de-Sitter metric without any loss of generality we
put
W =0 in Plebanski - Robinson coordinates
U =0 in Le Brun coordinates
¥ =¢ in the ¥X-formalism
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Conclusions

@ Hyperheavenly and heavenly spaces formalism in Plebanski -
Robinson coordinates seems to be "designed” for real problems in
neutral (+ + ——) signature. However, not all real neutral classes
can be obtained from generic complex metric by direct real slice
technique. In some cases additional complex transformation of the
coordinates is needed.
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Conclusions
@ Hyperheavenly and heavenly spaces formalism in Plebanski -
Robinson coordinates seems to be "designed” for real problems in
neutral (+ + ——) signature. However, not all real neutral classes
can be obtained from generic complex metric by direct real slice
technique. In some cases additional complex transformation of the
coordinates is needed.

Conclusions

o Similar technique allowed to obtain real Lorentzian metric admitting
null Killing vector of the type [II] from the complex hyperheavenly
metric of the type [II] ® [II]. How to use this technique in other
cases? Are there any chances to obtain new vacuum solutions of
Einstein field equations in Lorentzian signature from hyperheavenly
metrics (Plebariski programme)?
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Conclusions
@ Hyperheavenly and heavenly spaces formalism in Plebanski -
Robinson coordinates seems to be "designed” for real problems in
neutral (+ + ——) signature. However, not all real neutral classes
can be obtained from generic complex metric by direct real slice
technique. In some cases additional complex transformation of the
coordinates is needed.

Conclusions

o Similar technique allowed to obtain real Lorentzian metric admitting
null Killing vector of the type [II] from the complex hyperheavenly
metric of the type [II] ® [II]. How to use this technique in other
cases? Are there any chances to obtain new vacuum solutions of
Einstein field equations in Lorentzian signature from hyperheavenly
metrics (Plebariski programme)?

@ Problem: to find all solutions of BFP equation which give
conformally flat spaces (Le Brun form or X-formalism?)
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