All ASD complex and real 4-dimensional Einstein spaces with $\Lambda \neq 0$ admitting a nonnull Killing vector

Adam Chudecki

Technical University of Lodz

June 28, 2014

Motivations and goals

- In heavenly spaces with $\Lambda = 0$ and in hyperheavenly spaces ten Killing equations were reduced to single *master equation*. Such reduction in heavenly spaces with $\Lambda \neq 0$ was unknown.
- What is the simplest form of the metric and the form of the reduced heavenly equation for the complex ASD spaces with Λ admitting a nonnull Killing vector?
- How to obtain all real slices of this complex metric?

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations and goals

- In heavenly spaces with $\Lambda = 0$ and in hyperheavenly spaces ten Killing equations were reduced to single *master equation*. Such reduction in heavenly spaces with $\Lambda \neq 0$ was unknown.
- What is the simplest form of the metric and the form of the reduced heavenly equation for the complex ASD spaces with Λ admitting a nonnull Killing vector?
- How to obtain all real slices of this complex metric?

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations and goals

- In heavenly spaces with $\Lambda = 0$ and in hyperheavenly spaces ten Killing equations were reduced to single *master equation*. Such reduction in heavenly spaces with $\Lambda \neq 0$ was unknown.
- What is the simplest form of the metric and the form of the reduced heavenly equation for the complex ASD spaces with Λ admitting a nonnull Killing vector?
- How to obtain all real slices of this complex metric?

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Self-dual null strings

• 2-dimensional holomorphic distribution $\mathcal{D} = \{\mu_A \nu_{\dot{M}}, \mu_A \rho_{\dot{M}}\},\$ $\nu_{\dot{M}} \rho^{\dot{M}} \neq 0$ is integrable in the Frobenius sense if spinor μ_A satisfies the equations

$$\mu^B \mu^C \, \nabla_{B \dot{A}} \mu_C = 0$$

- Integral manifolds of distribution D are called *self-dual null strings* (SD null strings) and they constitute the congruence of self-dual null strings.
- There are two essentially different types of the congruences of the null strings: expanding and nonexpanding. Nonexpanding case corresponds to the null strings which are parallely propagated.

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Self-dual null strings

• 2-dimensional holomorphic distribution $\mathcal{D} = \{\mu_A \nu_{\dot{M}}, \mu_A \rho_{\dot{M}}\},\$ $\nu_{\dot{M}} \rho^{\dot{M}} \neq 0$ is integrable in the Frobenius sense if spinor μ_A satisfies the equations

$$\mu^B \mu^C \, \nabla_{B \dot{A}} \mu_C = 0$$

- Integral manifolds of distribution D are called *self-dual null strings* (SD null strings) and they constitute the congruence of self-dual null strings.
- There are two essentially different types of the congruences of the null strings: expanding and nonexpanding. Nonexpanding case corresponds to the null strings which are parallely propagated.

イロト 不得 とうき イヨト

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Self-dual null strings

• 2-dimensional holomorphic distribution $\mathcal{D} = \{\mu_A \nu_{\dot{M}}, \mu_A \rho_{\dot{M}}\},\$ $\nu_{\dot{M}} \rho^{\dot{M}} \neq 0$ is integrable in the Frobenius sense if spinor μ_A satisfies

the equations

$$\mu^B \mu^C \, \nabla_{B \dot{A}} \mu_C = 0$$

- Integral manifolds of distribution D are called *self-dual null strings* (SD null strings) and they constitute the congruence of self-dual null strings.
- There are two essentially different types of the congruences of the null strings: expanding and nonexpanding. Nonexpanding case corresponds to the null strings which are parallely propagated.

イロト 不得 とうほう 不良 とう

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Self-dual null strings

• In Einstein spaces the existence of the SD null strings implies that the SD Weyl tensor C_{ABCD} is algebraically degenerated and spinor μ_A is the undotted multiple Penrose spinor.

$$C_{ABCD}\mu^A\mu^B\mu^C=0$$

- The number of independent congruences of the SD null strings is equal to the number of multiple undotted Penrose spinors.
- There are infinitely many independent congruences of SD null strings in the ASD Einstein spaces. Moreover, if $\Lambda \neq 0$, all of them are expanding.

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Self-dual null strings

• In Einstein spaces the existence of the SD null strings implies that the SD Weyl tensor C_{ABCD} is algebraically degenerated and spinor μ_A is the undotted multiple Penrose spinor.

$$C_{ABCD}\mu^A\mu^B\mu^C = 0$$

- The number of independent congruences of the SD null strings is equal to the number of multiple undotted Penrose spinors.
- There are infinitely many independent congruences of SD null strings in the ASD Einstein spaces. Moreover, if $\Lambda \neq 0$, all of them are expanding.

(日)、

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Self-dual null strings

• In Einstein spaces the existence of the SD null strings implies that the SD Weyl tensor C_{ABCD} is algebraically degenerated and spinor μ_A is the undotted multiple Penrose spinor.

$$C_{ABCD}\mu^A\mu^B\mu^C = 0$$

- The number of independent congruences of the SD null strings is equal to the number of multiple undotted Penrose spinors.
- There are infinitely many independent congruences of SD null strings in the ASD Einstein spaces. Moreover, if $\Lambda \neq 0$, all of them are expanding.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Definitions of heavenly spaces

Definition (Heavenly space)

 \mathcal{H} -space with cosmological constant Λ is a 4 - dimensional complex analytic differential manifold endowed with a holomorphic Riemannian metric ds^2 satisfying the vacuum Einstein equations with Λ , $R_{ab} = -\Lambda g_{ab}, \Lambda \neq 0$, and such that the SD or ASD part of the Weyl tensor vanishes.

In what follows we assume that $C_{ABCD} = 0$ so we deal with ASD Einstein spaces with Λ (left-flat heavenly spaces).

Self-dual null strings Definitions of heavenly spaces Structure of the heavenly spaces

Heavenly spaces in Plebański - Robinson coordinates

 $\bullet\,$ The metric of the ASD, Einstein space with Λ can be locally brought to the form

$$ds^{2} = \phi^{-2} \left\{ 2\tau^{-1} (d\eta dw - d\phi dt) + 2\left(-\phi W_{\eta\eta} + \frac{\Lambda}{6\tau^{2}} \right) dt^{2} + 4\left(W_{\eta} - \phi W_{\eta\phi} \right) dw dt + 2\left(2W_{\phi} - \phi W_{\phi\phi} \right) dw^{2} \right\}$$

where (ϕ, η, w, t) are *Plebański - Robinson coordinates* and the complex constant parameter τ can be chosen as convenient. $W = W(\phi, \eta, w, t)$ is the key function.

• Einstein equations can be reduced to heavenly equation with Λ

$$W_{\eta\eta}W_{\phi\phi} - W_{\eta\phi}W_{\eta\phi} + 2\phi^{-1}W_{\eta}W_{\eta\phi} - 2\phi^{-1}W_{\phi}W_{\eta\eta} + (\tau\phi)^{-1}(W_{w\eta} - W_{t\phi}) - \frac{\Lambda}{6\tau^2}\phi^{-1}W_{\phi\phi} = 0$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Heavenly spaces in Plebański - Robinson coordinates

 $\bullet\,$ The metric of the ASD, Einstein space with Λ can be locally brought to the form

$$ds^{2} = \phi^{-2} \left\{ 2\tau^{-1} (d\eta dw - d\phi dt) + 2\left(-\phi W_{\eta\eta} + \frac{\Lambda}{6\tau^{2}}\right) dt^{2} + 4\left(W_{\eta} - \phi W_{\eta\phi}\right) dw dt + 2\left(2W_{\phi} - \phi W_{\phi\phi}\right) dw^{2} \right\}$$

where (ϕ, η, w, t) are *Plebański - Robinson coordinates* and the complex constant parameter τ can be chosen as convenient. $W = W(\phi, \eta, w, t)$ is the key function.

• Einstein equations can be reduced to heavenly equation with Λ

$$W_{\eta\eta}W_{\phi\phi} - W_{\eta\phi}W_{\eta\phi} + 2\phi^{-1}W_{\eta}W_{\eta\phi} - 2\phi^{-1}W_{\phi}W_{\eta\eta} + (\tau\phi)^{-1}(W_{w\eta} - W_{t\phi}) - \frac{\Lambda}{6\tau^{2}}\phi^{-1}W_{\phi\phi} = 0$$

Killing equations How to use the heavenly structure?

Heavenly spaces with Λ and nonnull Killing vector

Killing equations

• In ASD Einstein spaces with $\Lambda \neq 0$ and $C_{\dot{A}\dot{B}\dot{C}\dot{D}} \neq 0$ proper homothetic and proper conformal Killing symmetries are not allowed.

• Spinorial Killing equations read

$$\nabla^{~~(\dot{B}}_{(A}K^{~~\dot{D})}_{C)}=0~,~~\nabla^{N\dot{N}}K_{N\dot{N}}=0$$

Killing equations How to use the heavenly structure?

Heavenly spaces with Λ and nonnull Killing vector

Killing equations

- In ASD Einstein spaces with Λ ≠ 0 and C_{ABCD} ≠ 0 proper homothetic and proper conformal Killing symmetries are not allowed.
- Spinorial Killing equations read

$$\nabla^{~(\dot{B}}_{(A}K^{~~\dot{D})}_{C)}=0~,~~\nabla^{N\dot{N}}K_{N\dot{N}}=0$$

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

Invariant which characterize Killing vector

• Any Killing vector can be characterized by the invariant $l := l_{AB} l^{AB}$ where spinor l_{AB} is defined by the relation

$$l_{AB} := \frac{1}{2} \nabla_{(A}^{\dot{N}} K_{B)\dot{N}}$$

• It can be proved, that in ASD Einstein spaces with $\Lambda \neq 0$

 $l = 0 \iff$ Killing vector is null $l \neq 0 \iff$ Killing vector is nonnull

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

Invariant which characterize Killing vector

• Any Killing vector can be characterized by the invariant $l := l_{AB} l^{AB}$ where spinor l_{AB} is defined by the relation

$$l_{AB} := \frac{1}{2} \nabla_{(A}^{\dot{N}} K_{B)\dot{N}}$$

• It can be proved, that in ASD Einstein spaces with $\Lambda \neq 0$

 $l = 0 \iff$ Killing vector is null $l \neq 0 \iff$ Killing vector is nonnull

Killing equations

How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

The master equation

Ten Killing equations in ASD Einstein spaces with Λ can be reduced to one equation called *the master equation*. Unfortunately, this equation is much more complicated then the similar equation in hyperheavenly spaces.

Why?

(日)、

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

What is the best way to use the heavenly structure?

- There are infinitely many congruences of SD null strings. Which one should we choose?
- Decomposing spinor l_{AB} according to the formula $l_{AB} = m_{(A}n_{B)}$ one finds, that both m_A and n_A satisfy the null string equations.
- Then the best choice is to use the congruence of the null strings generated by the spinor m_A . The complex spinor transformation allows to set $l_{11} = 0$.

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

What is the best way to use the heavenly structure?

- There are infinitely many congruences of SD null strings. Which one should we choose?
- Decomposing spinor l_{AB} according to the formula $l_{AB} = m_{(A}n_{B)}$ one finds, that both m_A and n_A satisfy the null string equations.
- Then the best choice is to use the congruence of the null strings generated by the spinor m_A . The complex spinor transformation allows to set $l_{11} = 0$.

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

What is the best way to use the heavenly structure?

- There are infinitely many congruences of SD null strings. Which one should we choose?
- Decomposing spinor l_{AB} according to the formula $l_{AB} = m_{(A}n_{B)}$ one finds, that both m_A and n_A satisfy the null string equations.
- Then the best choice is to use the congruence of the null strings generated by the spinor m_A . The complex spinor transformation allows to set $l_{11} = 0$.

Heavenly spaces with Λ and Killing vector

Metric in Plebański - Robinson coordinates

- Any nonnull Killing vector can be brought to the form $K = \partial_t$
- From the master equation it follows, that the key function becomes the function of three variables $W = W(\phi, \eta, w)$.

The metric takes the form

$$ds^{2} = \phi^{-2} \left\{ 2\tau^{-1} (d\eta dw - d\phi dt) + 2\left(-\phi W_{\eta\eta} + \frac{\Lambda}{6\tau^{2}}\right) dt^{2} + 4\left(W_{\eta} - \phi W_{\eta\phi}\right) dw dt + 2\left(2W_{\phi} - \phi W_{\phi\phi}\right) dw^{2} \right\}$$

Heavenly equation with Λ reduces to the equation

$$\begin{split} W_{\eta\eta} W_{\phi\phi} - W_{\eta\phi} W_{\eta\phi} + 2\phi^{-1} W_{\eta} W_{\eta\phi} - 2\phi^{-1} W_{\phi} W_{\eta\eta} \\ + (\tau\phi)^{-1} W_{w\eta} - \frac{\Lambda}{6\tau^2} \phi^{-1} W_{\phi\phi} = 0 \end{split}$$

э.

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

Metric in LeBrun form (LeBrun, 1991)

In new coordinate system (X,Y,Z,T) the Killing vector has the form $K=\partial_Z$ and the metric can be locally brought to the form

$$ds^{2} = \frac{V}{T^{2}} \left(e^{U} (dX^{2} - dY^{2}) + dT^{2} \right) - \frac{1}{VT^{2}} (dZ + \alpha)^{2}$$

where

$$V := \frac{3}{2} \frac{TU_T - 2}{\Lambda}$$

and the 1-form α fulfills the equation

$$-\frac{2}{3}\Lambda \,d\alpha = (e^U)_T \,dX \wedge dY - TdX \wedge dU_Y + TdU_X \wedge dY$$

Heavenly equation with Λ can be brought to the Boyer - Finley - Plebański equation for U=U(T,X,Y)

$$(e^U)_{TT} + U_{XX} - U_{YY} = 0$$

Invariant, which characterizes the Killing vector reads $l_{AB}l^{AB} = -\frac{2}{9}\frac{\Lambda^2}{T^2} \neq 0.$

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

Metric in the Σ -formalism

Changing the coordinates $(T,X,Y,Z) \to (\varrho,\varphi,\xi,v)$ according to the formulas

$$Z = -\varrho \ , \quad T = \varphi \ , \quad Y = \xi - v \ , \quad X = -\xi - v$$

and using the potential $\boldsymbol{\Sigma}$ defined by the relation

 $U =: \ln \Sigma_{\xi}$

we arrive to the alternate form of the metric:

-

Killing equations How to use the heavenly structure? Heavenly spaces with Λ and nonnull Killing vector

Metric in the Σ -formalism

In coordinates (φ, z, ϱ, v) the Killing vector is $K = \partial_{\varrho}$ and the metric can be locally brought to the form

$$ds^{2} = \varphi^{-2} \left\{ -\frac{2}{\tau} d\varphi d\varrho + \frac{2\Lambda}{3\tau^{2}} \frac{\Sigma_{\xi}}{\Omega_{\xi}} d\varrho^{2} + \frac{4}{\tau} \frac{\Sigma_{\xi} \Omega_{\varphi}}{\Omega_{\xi}} dv d\varrho + \frac{6}{\Lambda} \frac{\Sigma_{\xi} \Omega_{\varphi}^{2}}{\Omega_{\xi}} dv^{2} - \frac{6}{\Lambda} \Omega_{\varphi} d\varphi dv - \frac{6}{\Lambda} \Omega_{\xi} d\xi dv \right\}$$

where

$$\Omega := 2\Sigma - \varphi \Sigma_{\varphi} \ , \quad \Omega_{\xi} \neq 0$$

Heavenly equation with Λ takes the form

$$\Sigma_{\xi v} + \Sigma_{\xi} \Sigma_{\varphi \varphi} = 0$$

Real slices

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real neutral slices

• In neutral signature the spinor l_{AB} is real

$$l_{AB}=\bar{l}_{AB}$$

• Using decomposition $l_{AB} = m_{(A}n_{B)}$ we obtain two solutions:

- The first case can be obtained from the complex metric in LeBrun
- There are no real null strings related to the Killing vector in the

-

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real neutral slices

• In neutral signature the spinor l_{AB} is real

$$l_{AB}=\bar{l}_{AB}$$

• Using decomposition $l_{AB} = m_{(A}n_{B)}$ we obtain two solutions:

1)
$$m_A$$
 and n_A are real $\implies l_{AB}l^{AB} < 0$
2) m_A and n_A are complex: $m_A = \pm \bar{n}_A \implies l_{AB}l^{AB} > 0$

- The first case can be obtained from the complex metric in LeBrun form by direct real slice
- There are no real null strings related to the Killing vector in the second case
- Solution: to perform the complex transformation of the coordinates, namely $T \rightarrow iT$, $Y \rightarrow iY$ and then take the real slice of obtained complex metric

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real neutral slices

• In neutral signature the spinor l_{AB} is real

$$l_{AB} = \bar{l}_{AB}$$

• Using decomposition $l_{AB} = m_{(A}n_{B)}$ we obtain two solutions:

1)
$$m_A$$
 and n_A are real $\implies l_{AB}l^{AB} < 0$
2) m_A and n_A are complex: $m_A = \pm \bar{n}_A \implies l_{AB}l^{AB} > 0$

• The first case can be obtained from the complex metric in LeBrun form by direct real slice

• There are no real null strings related to the Killing vector in the second case

• Solution: to perform the complex transformation of the coordinates, namely $T \rightarrow iT$, $Y \rightarrow iY$ and then take the real slice of obtained complex metric

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real neutral slices

• In neutral signature the spinor l_{AB} is real

$$l_{AB} = \bar{l}_{AB}$$

• Using decomposition $l_{AB} = m_{(A}n_{B)}$ we obtain two solutions:

1)
$$m_A$$
 and n_A are real $\implies l_{AB}l^{AB} < 0$
2) m_A and n_A are complex: $m_A = \pm \bar{n}_A \implies l_{AB}l^{AB} > 0$

- The first case can be obtained from the complex metric in LeBrun form by direct real slice
- There are no real null strings related to the Killing vector in the second case

• Solution: to perform the complex transformation of the coordinates, namely $T \rightarrow iT$, $Y \rightarrow iY$ and then take the real slice of obtained complex metric

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real neutral slices

• In neutral signature the spinor l_{AB} is real

$$l_{AB} = \bar{l}_{AB}$$

• Using decomposition $l_{AB} = m_{(A}n_{B)}$ we obtain two solutions:

1)
$$m_A$$
 and n_A are real $\implies l_{AB}l^{AB} < 0$
2) m_A and n_A are complex: $m_A = \pm \bar{n}_A \implies l_{AB}l^{AB} > 0$

- The first case can be obtained from the complex metric in LeBrun form by direct real slice
- There are no real null strings related to the Killing vector in the second case
- Solution: to perform the complex transformation of the coordinates, namely $T \to iT$, $Y \to iY$ and then take the real slice of obtained complex metric

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real neutral slices (Högner, 2012)

For the real ASD Einstein spaces in neutral (++--) signature with $\Lambda\neq 0$ admitting nonnull Killing vector $K=\partial_z$ we obtained

$$ds^{2} = \frac{V}{t^{2}} \left(e^{U} (dx^{2} \pm dy^{2}) \mp dt^{2} \right) - \frac{1}{Vt^{2}} (dz + \alpha)^{2}$$

where

$$V := \pm \frac{tU_t - 2}{2\Lambda}$$

and the 1-form α satisfies

$$2\Lambda \, d\alpha = (e^U)_t \, dx \wedge dy - t \, dx \wedge dU_y \mp t \, dU_x \wedge dy$$

The function U satisfies BFP equation

$$(e^U)_{tt} \mp U_{xx} - U_{yy} = 0$$

Moreover

- case $l_{AB}l^{AB} > 0$ corresponds to the upper signs
- case $l_{AB}l^{AB} < 0$ corresponds to the lower signs

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real Euclidean slices

- In Euclidean signature (+ + ++) there are no congruences of null strings
- Solution: to perform the complex transformation of the coordinates, namely $T \to iT$, $X \to iX$ and then take the real slice of obtained complex metric

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real Euclidean slices

- In Euclidean signature (+ + ++) there are no congruences of null strings
- Solution: to perform the complex transformation of the coordinates, namely $T\to iT,\ X\to iX$ and then take the real slice of obtained complex metric

イロト 不得 とうほう 不良 とう

э.

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real Euclidean slices (Przanowski, 1991; Tod, 2006)

For the real ASD Einstein spaces in Euclidean (++++) signature with $\Lambda\neq 0$ admitting nonnull Killing vector $K=\partial_z$ we obtained

$$ds^{2} = \frac{V}{t^{2}} \left(e^{U} (dx^{2} + dy^{2}) + dt^{2} \right) + \frac{1}{Vt^{2}} (dz + \alpha)^{2}$$

where

$$V = \frac{tU_t - 2}{4\Lambda}$$

and the 1-form α satisfies

$$-4\Lambda \, d\alpha = (e^U)_t \, dx \wedge dy + t \, dx \wedge dU_y + t \, dU_x \wedge dy$$

The function \boldsymbol{U} satisfies BFP equation

$$(e^U)_{tt} + U_{xx} + U_{yy} = 0$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real Lorentzian slices

• Lorentzian slices exist only if $\bar{C}_{ABCD} = C_{\dot{A}\dot{B}\dot{C}\dot{D}}$

- The only Lorentzian slices which can be obtained from the considered metrics after setting C_{ABCD} = 0 are de-Sitter metrics.
- To obtain complex de-Sitter metric without any loss of generality we put

W = 0 in Plebański - Robinson coordinates U = 0 in Le Brun coordinates $\Sigma = \xi$ in the Σ -formalism

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real Lorentzian slices

- Lorentzian slices exist only if $\bar{C}_{ABCD} = C_{\dot{A}\dot{B}\dot{C}\dot{D}}$
- The only Lorentzian slices which can be obtained from the considered metrics after setting $C_{\dot{A}\dot{B}\dot{C}\dot{D}} = 0$ are de-Sitter metrics.
- To obtain complex de-Sitter metric without any loss of generality we put

W = 0 in Plebański - Robinson coordinates U = 0 in Le Brun coordinates $\Sigma = \xi$ in the Σ -formalism

イロト 不得下 イヨト イヨト

Real neutral slices Real Euclidean slices Real Lorentzian slices

Real Lorentzian slices

- Lorentzian slices exist only if $\bar{C}_{ABCD} = C_{\dot{A}\dot{B}\dot{C}\dot{D}}$
- The only Lorentzian slices which can be obtained from the considered metrics after setting $C_{\dot{A}\dot{B}\dot{C}\dot{D}} = 0$ are de-Sitter metrics.
- To obtain complex de-Sitter metric without any loss of generality we put

W = 0 in Plebański - Robinson coordinates U = 0 in Le Brun coordinates $\Sigma = \xi$ in the Σ -formalism

Conclusions

- Hyperheavenly and heavenly spaces formalism in Plebański -Robinson coordinates seems to be "designed" for real problems in neutral (+ + --) signature. However, not all real neutral classes can be obtained from generic complex metric by direct real slice technique. In some cases additional complex transformation of the coordinates is needed.
- Similar technique allowed to obtain real Lorentzian metric admitting null Killing vector of the type [II] from the complex hyperheavenly metric of the type [II] \otimes [II]. How to use this technique in other cases? Are there any chances to obtain new vacuum solutions of Einstein field equations in Lorentzian signature from hyperheavenly metrics (Plebański programme)?
- Problem: to find all solutions of BFP equation which give conformally flat spaces (Le Brun form or Σ-formalism?)

イロト 不同 トイヨト イヨト

Conclusions

- Hyperheavenly and heavenly spaces formalism in Plebański -Robinson coordinates seems to be "designed" for real problems in neutral (+ + --) signature. However, not all real neutral classes can be obtained from generic complex metric by direct real slice technique. In some cases additional complex transformation of the coordinates is needed.
- Similar technique allowed to obtain real Lorentzian metric admitting null Killing vector of the type [II] from the complex hyperheavenly metric of the type [II] \otimes [II]. How to use this technique in other cases? Are there any chances to obtain new vacuum solutions of Einstein field equations in Lorentzian signature from hyperheavenly metrics (Plebański programme)?

• Problem: to find all solutions of BFP equation which give conformally flat spaces (Le Brun form or Σ -formalism?)

イロト 不得 トイヨト イヨト

Conclusions

- Hyperheavenly and heavenly spaces formalism in Plebański -Robinson coordinates seems to be "designed" for real problems in neutral (+ + --) signature. However, not all real neutral classes can be obtained from generic complex metric by direct real slice technique. In some cases additional complex transformation of the coordinates is needed.
- Similar technique allowed to obtain real Lorentzian metric admitting null Killing vector of the type [II] from the complex hyperheavenly metric of the type [II] \otimes [II]. How to use this technique in other cases? Are there any chances to obtain new vacuum solutions of Einstein field equations in Lorentzian signature from hyperheavenly metrics (Plebański programme)?
- Problem: to find all solutions of BFP equation which give conformally flat spaces (Le Brun form or Σ -formalism?)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト