Inhomogeneous pressure models mimicking ACDM universe

Mariusz P. Dąbrowski

Institute of Physics, University of Szczecin, Poland and

Copernicus Center for Interdisciplinary Studies, Kraków, Poland

The First Conference of Polish Society on Relativity - 30 June 2014

Inhomogeneous pressure models mimicking Λ CDM universe – p. 1/44

References

- A. Balcerzak and MPD, Phys. Rev. D87, 063506 (2013) (arXiv: 1210.6331).
- A. Balcerzak, MPD, T. Denkiewicz, Ap. J. to appear (arXiv: 1312.1567).
- A. Balcerzak, MPD, T. Denkiewicz, D. Polarski, D. Puy in preparation (2014).

see also

- MPD, Journ. Math. Phys. **34**, 1447 (1993)
- MPD, Astroph. Journ. **447**, 43 (1995) (0902.2899)
- MPD and M.A. Hendry, Astroph. Journ., **498**, 67 (1998)

- I. Universe symmetries. Acceleration as back-reaction of inhomogeneities.
- Complementary models of the spherically symmetric Universe.
- 3. Redshift drift in inhomogeneous pressure models.
- 4. Off-center observers and supernovae.
- 5. More tests in progress central observer (BAO, CMB shift parameter).
- 6. Conclusions

1. Universe symmetries. Acceleration as back-reaction of inhomogeneities.

In the context of dark energy problem (Λ being 120 orders of magnitude too large) there has been more interest in the non-friedmannian models of the universe which could explain the acceleration only due to inhomogeneity (initially E. Kolb). One of the strogest claims was that

we are living in a spherically symmetric void of density described by the Lemaître-Tolman-Bondi dust spheres model

e.g. Uzan, Clarkson, Ellis (PRL, **100**, 191303 (2008)) Caldwell and A. Stebbins (PRL, **100**, 191302 (2008)) Clarkson et al. (PRL, **101**, 011301 (2008)) and many others

- Simplest inhomogeneous models are spherically symmetric and violate the Copernican Principle which says that we do not live at the center of the Universe.
- However observations (including CMB) have been made just from one point in the Universe and extend only onto the one (and unique) past light cone and proved isotropy only.
- It seems that homogeneity **needs a check**.
- Suppose we live in an inhomogeneous model of the Universe with the same (small) number of parameters as a homogeneous dark energy model and they both fit observations very well.
- Could we **differentiate** between these models?

New "paradigm" of inhomogeneity - LTB void.

- There are two complementary spherically symmetric models of the universe.
- These are: the inhomogeneous density (dust shells)
 Lemaître-Tolman-Bondi (LTB) models and inhomogeneous pressure
 (gradient of pressure shells) Stephani models.
- Can they mimic homogeneous ΛCDM dark energy models?
- Additionally, there are lots inhomogeneous models (Goode (1986), Szafron (1977), Szekeres (1975), Wainwright-Goode (1980), Ruiz-Senovilla (1992) etc.) to investigate as candidates for dark energy. See e.g. A. Krasiński, K. Bolejko, M.-N. Célérier and others.

2. Complementary models of the spherically symmetric Universe

In order to make a **complementary analysis** with LTB models the following table proves useful:

	pressure	density
FRW	p = p(t)	$\varrho=\varrho(t)$
LTB	$p = 0 \ (p(t))$	$\varrho = \varrho(t,r)$ - nonuniform

Stephani p = p(t, r) - nonuniform $\varrho = \varrho(t)$

Inhomogeneous pressure models mimicking Λ CDM universe – p. 7/44

– is the only spherically symmetric solution of Einstein equations for **pressureless** matter ($T^{ab} = \rho u^a u^b$) and no cosmological term (G. Lemaître, Ann. Soc. Sci. Brux. A 53, 51 (1933); R.C. Tolman, Proc. Natl. Acad. Sci., 20, 169 (1934); H. Bondi MNRAS 107, 410 (1947))

$$ds^{2} = -dt^{2} + \frac{R'^{2}}{1-K}dr^{2} + R^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \quad , \tag{1}$$

where

$$R = R(t, r); \qquad R' = \partial R / \partial r; \qquad K = K(r) .$$
(2)

The Einstein equations reduce to

$$\dot{R}^2 = \frac{2M(r)}{R} - K(r); \qquad 2M' = \kappa \varrho R^2 R'$$
, (3)

and are solved by

$$R(r,\eta) = \frac{M(r)}{K(r)} \Phi'(\eta); \qquad t(r,\eta) = T_0(r) + \frac{M(r)}{K^{3/2}(r)} \phi'(\eta) \quad , \tag{4}$$

where for K(r) < 0 (hyperbolic), K(r) = 0 (parabolic), and K(r) > 0 (elliptic) appropriately (K(r) is a spatially dependent "curvature index") we have

$$\Phi(\eta) = (\sinh \eta - \eta; \eta^3/6; \eta - \sin \eta) \quad .$$
(5)

Regularity conditions:

- existence of a regular center of symmetry r = 0 – implies $R(t,0) = \dot{R}(t,0) = 0$ and M(0) = M'(0) = K(0) = K'(0) = 0 and $R' \to 1$. - hypersurfaces of constant time are orthogonal to 4-velocity and are of topology S^3 – implies the existence of a second center of symmetry $r = r_c$ (with some 'turning value' $0 < r_{tv} < r_c$)

- a 'shell-crossing' singularity should be **avoided** – implies $R'(t, r) \neq 0$ except at turning values (though it is a weak singularity - no geodesic incompletness)

– is the only spherically symmetric solution of Einstein equations for perfect-fluid energy-momentum tensor ($T^{ab} = (\rho + p)u^a u^b + pg^{ab}$) which is **conformally flat** and **embeddable** in a 5-dimensional flat space (H. Stephani Commun. Math. Phys. **4**, 167 (1967); A. Krasiński, GRG **15**, 673 (1983)). After introducing a Friedmann-like time coordinate (cf. later) we have

$$ds^{2} = -\frac{a^{2}}{\dot{a}^{2}}\frac{a^{2}}{V^{2}}\left[\left(\frac{V}{a}\right)^{\cdot}\right]^{2}dt^{2} + \frac{a^{2}}{V^{2}}\left[dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right], \qquad (6)$$

where

$$V(t,r) = 1 + \frac{1}{4}k(t)r^2 , \qquad (7)$$

and $(...)^{\cdot} \equiv \partial/\partial t$. The function a(t) plays the role of a generalized scale factor, k(t) has the meaning of a time-dependent "curvature index", and r is the radial coordinate.

The energy density and pressure are given by

$$\varrho(t) = 3 \left[\frac{\dot{a}^2(t)}{a^2(t)} + \frac{k(t)}{a^2(t)} \right] , \qquad (8)$$

$$p(t,r) = \varrho(t) \left\{ -1 + \frac{1}{3} \frac{\dot{\varrho}(t)}{\varrho(t)} \frac{\left[\frac{V(t,r)}{a(t)} \right]}{\left[\frac{V(t,r)}{a(t)} \right]^{\cdot}} \right\} \equiv w_{eff}(t,r)\varrho(t) , \qquad (9)$$

and generalize the standard Einstein-Friedmann relations

$$\varrho(t) = 3\left(\frac{\dot{a}^2(t)}{a^2(t)} + \frac{k}{a^2(t)}\right) , \qquad (10)$$

$$p(t) = -\left(2\frac{\ddot{a}(t)}{a(t)} + \frac{\dot{a}^2(t)}{a^2(t)} + \frac{k}{a^2(t)}\right)$$
(11)

to inhomogeneous models.

SS Stephani universes

Kinematic characteristic of the model:

$$u_{a;b} = \frac{1}{3}\Theta h_{ab} - \dot{u}_a u_b \quad , \qquad \dot{u} \equiv (\dot{u}_a \dot{u}^a)^{\frac{1}{2}} \; . \tag{12}$$

where \dot{u} is the acceleration scalar and the **acceleration vector**

$$\dot{u}_{r} = \frac{\left\{\frac{a^{2}}{\dot{a}^{2}}\frac{a^{2}}{V^{2}}\left[\left(\frac{V}{a}\right)^{\cdot}\right]\right\}_{,r}}{\frac{a^{2}}{\dot{a}^{2}}\frac{a^{2}}{V^{2}}\left[\left(\frac{V}{a}\right)^{\cdot}\right]}$$
(13)

while the expansion scalar is the same as in FRW model, i.e.,

$$\Theta = 3\frac{\dot{a}}{a} . \tag{14}$$

Compare: LTB has non-zero expansion and shear.

The four-velocity and the acceleration are

$$u_{\tau} = -c \frac{1}{V}, \qquad \dot{u}_{r} = -c \frac{V_{,r}}{V}.$$
 (15)

The components of the vector tangent to zero geodesic are

$$k^{\tau} = \frac{V^2}{a}, \quad k^r = \pm \frac{V^2}{a^2} \sqrt{1 - \frac{h^2}{r^2}}, \quad k^{\theta} = 0, \quad k^{\varphi} = h \frac{V^2}{a^2 r^2}, \quad (16)$$

where h = const., and the plus sign in applies to a ray moving away from the centre, while the minus sign applies to a ray moving towards the centre. The **acceleration scalar** is

$$\dot{u} \equiv (\dot{u}_{\mu}\dot{u}^{\mu})^{\frac{1}{2}} = \frac{V_{,r}}{a} = \frac{1}{2}\frac{k(t)}{a(t)}r$$
(17)

The farther away from the center at r = 0, the larger the acceleration.

Inhomogeneous pressure models - topology & singularities

- Global topology still $S^3 \times R$. The models are just specific deformations of the de Sitter hyperboloid near the "neck circle", but with local topology of the constant time hypersurfaces (index k(t)) changing in time.
- Usually we cut hyperboloid by either k = 1 (S^3 topology), k = 0 (R^3) or k = -1 (H^3) here we have "3-in-1" the Universe may either "open up" or "close down".
- standard **Big-Bang** singularities $a \to 0$, $\rho \to \infty$, $p \to \infty$ are possible (FRW limit).
- Finite Density (FD) singularities of pressure appear at some particular value of a radial coordinate r in standard FRW cosmology there exist exotic (sudden future) singularities of pressure (SFS) with finite scale factor and energy density they differ (MPD 2005).
- There is no global equation of state it changes from shell to shell and on the hypersurfaces t = const.

... have been found (MPD, 1993). For the so-called Model II one has

$$\left(\frac{k}{a}\right)^{\prime} = 0$$
 i.e. $k(\tau) = -\beta a(\tau)$ (18)

with the unit $[\beta] = Mpc^{-1}$.

A subcase of model II (from now on **IIA**) was proposed by Stelmach and Jakacka (2001)) – it assumes that the **standard barotropic** equation of state

$$\frac{p(\tau)}{c^2} = w\varrho(\tau) \tag{19}$$

at the center of symmetry and **no exact form** of the scale factor. This assumption gives that

$$\frac{8\pi G}{3c^2}\varrho(\tau) = C^2(\tau) = \frac{A^2}{a^{3(w+1)}(\tau)} \quad (A = \text{const.})$$
(20)

and allows to write a generalized Friedmann equation as

and

$$\frac{p(\tau)}{c^2} = \left[w + \frac{\beta}{4}(w+1)a(\tau)r^2\right]\varrho(\tau) = w_{eff}\varrho(\tau) \quad .$$
(22)

Similarly as in the Friedmann model, we can define critical density as

$$\varrho_{cr}(\tau) = \frac{3c^2}{8\pi G} \left(\frac{a_{,\tau}}{a(\tau)}\right)^2 \tag{23}$$

and the density parameter $\Omega(\tau) = \rho(\tau)/\rho_{cr}(\tau)$ which after taking $\tau = \tau_0$ gives

$$1 = \frac{A^2}{H_0^2 a^{3(w+1)}(\tau_0)} - \frac{\beta c^2}{H_0^2 a_0} \equiv \Omega_0 + \Omega_{inh} \quad , \tag{24}$$

and so

$$\beta = \frac{a_0 H_0^2}{c^2} \left(\Omega_0 - 1\right) \quad . \tag{25}$$

The effective barotropic index w_{eff} is getting more and more negative simulating dark energy for large distances form the center (at r = 0) and far from the big-bang singularity (at t = 0).

In Model **IIB** the scale factor is of the **dust-like type**

$$a(t) = \sigma t^{2/3}, \ k(t) = -\alpha \sigma a(t), \ ,$$
 (26)

 $([\alpha] = (s/km)^{2/3}Mpc^{-4/3}, [\sigma] = (km/s)^{2/3}Mpc^{1/3}, [t] = sMpc/km)$ but the equation of state at the center of symmetry is no longer barotropic:

$$\rho = p \left(\frac{32\pi^2 G^2}{3\alpha^3 c^8} p^2 - \frac{3}{2} \right) \quad . \tag{27}$$

In the limit of the **inhomogeneity parameter** $\alpha \to 0$ one obtains the Friedmann universe. FD singularity of pressure is at $r \to \infty$.

3. Redshift drift test for inhomogeneous models.

Redshift drift (Sandage 1962) - the idea is to collect data from two light cones separated by 10-20 years to look for a change in redshift of a source as a function of time.

There is a relation between the times of emission of light by the source τ_e and $\tau_e + \delta \tau_e$ and times of their observation at τ_o and $\tau_o + \delta \tau_o$:

$$\int_{\tau_e}^{\tau_o} \frac{d\tau}{a(\tau)} = \int_{\tau_e + \delta\tau_e}^{\tau_o + \delta\tau_o} \frac{d\tau}{a(\tau)} , \qquad (28)$$

which for small $\delta \tau_e$ and $\delta \tau_o$ reads as $\frac{\delta \tau_e}{a(\tau_e)} = \frac{\delta \tau_o}{a(\tau_o)}$.

Inhomogeneous pressure models mimicking Λ CDM universe – p. 19/44

For small $\delta \tau_e$ and $\delta \tau_o$ we expand in Taylor series

$$(u_{a}k^{a})_{o} = (u_{a}k^{a})(r_{0}, \tau_{0} + \delta\tau_{0}) = (u_{a}k^{a})(r_{0}, \tau_{0}) + \left[\frac{\partial(u_{a}k^{a})}{\partial\tau}\right]_{(r_{0}, \tau_{0})} \delta\tau_{0}$$

$$(u_{a}k^{a})_{e} = (u_{a}k^{a})(r_{e}, \tau_{e} + \delta\tau_{e}) = (u_{a}k^{a})(r_{e}, \tau_{e}) + \left[\frac{\partial(u_{a}k^{a})}{\partial\tau}\right]_{(r_{e}, \tau_{e})} \delta\tau_{e} ,$$

where for inhomogeneous pressure models the readshift reads as

$$1 + z = \frac{(u_a k^a)_e}{(u_a k^a)_O} = \frac{\frac{V(t_e, r_e)}{R(t_e)}}{\frac{V(t_0, r_0)}{R(t_0)}}$$
(29)

From the definition of the redshift drift by Sandage (1962):

$$\delta z = z_e - z_0 = \frac{(u_a k^a)(r_e, \tau_e + \delta \tau_e)}{(u_a k^a)(r_0, \tau_0 + \delta \tau_0)} - \frac{(u_a k^a)(r_e, \tau_e)}{(u_a k^a)(r_0, \tau_0)}, \qquad (30)$$

Inhomogeneous pressure models mimicking Λ CDM universe – p. 20/44

Redshift drift in inhomogeneous pressure models.

For general SS Stephani metric we obtain

$$\frac{\partial}{\partial \tau} \left(u_a k^a \right) = -\left(\frac{1}{a}\right) \cdot -\frac{1}{4} \left(\frac{k}{a}\right) \cdot r^2 , \qquad (31)$$

and

$$\frac{\delta z}{\delta \tau_0} = \frac{\left[\left(\frac{1}{a}\right)^{\cdot} - \frac{1}{4} \left(\frac{k}{a}\right)^{\cdot} r^2 \right]_e}{\left[1 + \frac{1}{4} k r^2 \right]_e} a(\tau_e) - \frac{\left[\left(\frac{1}{a}\right)^{\cdot} + \frac{1}{4} \left(\frac{k}{a}\right)^{\cdot} r^2 \right]_o}{\left[1 + \frac{1}{4} k r^2 \right]_o} a(\tau_0) (1+z) \quad (32)$$

For the model with $(k/a)^{\cdot} = 0$ we have

$$\frac{\delta z}{\delta \tau} = -\frac{H_0}{1 + \frac{1}{4}k(\tau_0)r_0^2} \left[\frac{H_e(z)}{H_0} - (1+z)\right] .$$
(33)

Sandage-Loeb CDM formula for $\Omega_{inh} \to 0$; $H_e(z) = H_0(1+z)^{3/2}$, $r_0 \to 0$.

Redshift drift - LTB voids.

- Plots for 3 different LTB void models, ACDM, brane DGP, Cold Dark Matter (CMD) (Quercellini et. al, 2012).
- ACDM the drift is **positive at small redshift**, but becomes negative for $z \gtrsim 2$.
- Giant void (LTB) model mimicking dark energy the drift is always negative.
 Inhomogeneous pressure models mimicking ACD

Redshift drift - inhomogeneous pressure models ($r_0 = 0$, w = 0).

- \square Ω_{inh} small drift as in LTB and CDM models
- Ω_{inh} larger drift as in Λ CDM models (first positive, then negative), e.g. for $\Omega_{inh} = 0.61$ drift is positive for $z \in (0, 0.34)$.
- Ω_{inh} very large drift positive ($\Omega_{inh} = 0.99$ up to z = 17; $\Omega_{inh} = 1$ (inhomogeneity-domination) z > 0) and $\frac{\delta z}{\delta t} = H_0 \frac{z}{2}$ which means that the drift grows linearly with redshift.

Redshift drift - observational perspective.

- One is able to differentiate between the drift in ΛCDM models, in LTB models, and in Stephani models this can be done in future experiments.
- At larger z > 1.7 redshifts by giant telescopes: European Extremely Large Telescope (E-ELT) with spectrograph CODEX (COsmic Dynamics EXperiment); Thirty Meter Telescope (TMT); Giant Magellan Telescope (GMT).
- At smaller (even z ~ 0.2) redshifts by space-borne gravitational wave interferometers like DECIGO/BBO (DECi-hertz Interferometer Gravitational Wave Observatory/Big Bang Observer). This could clearly reject LTB models if the drift measured was positive!

4. Off-center observer's position against Union2 supernovae.

The luminosity distance is given by

$$d_L = \frac{a_0(1+z)\hat{r}'}{1+\frac{\beta}{4}a_0r_0^2} , \qquad (34)$$

with an **off-center** observer placed at r_0, θ_0, ϕ_0 as meant in the coordinate system $\{t, r, \theta, \varphi\}$ of the Stephani metric. More precisely we have

$$d_L = \frac{(1+z)}{1 - \frac{a_0 H_0^2 \Omega_{inh}}{4} r_0^2} \hat{r}'(\Omega_{inh}, w, r_0, \theta_0, \varphi_0, H_0, \hat{\theta}', \hat{\varphi}', z) , \qquad (35)$$

where

$$\hat{r}' = \hat{r}'(a) = \frac{1}{H_0} \int_{a_e}^{1} \frac{dx}{\sqrt{(1 - \Omega_{inh})x^{1-3w} + \Omega_{inh}x^3}},$$
(36)

and a_e is the value of the scale factor at the moment of an emission of the light ray.

Off-center observers

For the redshift one takes

$$1 + z = \frac{a_0(4 - a_e H_0^2 \Omega_{inh} r_e^2)}{a_e (4 - a_0 H_0^2 \Omega_{inh} r_0^2)}, \qquad (37)$$

where

$$r_e^2 = (r_0 \sin \theta_0 \cos \varphi_0 + \hat{r}'(a) \sin \hat{\theta}' \cos \hat{\varphi}')^2 + (r_0 \sin \theta_0 \sin \varphi_0 + \hat{r}'(a) \sin \hat{\theta}' \sin \hat{\varphi}')^2 + (r_0 \cos \theta_0 + \hat{r}'(a) \cos \hat{\theta}' \sin \hat{\varphi}')^2$$
(38)

and $\hat{\theta}'$ and $\hat{\varphi}'$ are the coordinates of a supernova as seen by an off-center observer in the sky.

We applied **Union2 557 supernovae data** of Amanullah et al. (2010, ApJ, 716, 712) - we note the courtesy of M. Kowalski and U. Feindt to consult the sample.

Off-center observers - model IIA

Best-fit values: inhomogeneity density $\Omega_{inh} \sim 0.77$, center of symmetry equation of state barotropic index $w \sim 0.093$, off-center observer position Dist = 341 Mpc $(\chi^2 = 526)$.

Off-center observers - model IIB

Non-barotropic EOS limits stronger the position of an observer. Best-fit values: inhomogeneity parameter $\alpha = 7.31 \cdot 10^{-9} (s/km)^{2/3} Mpc^{-4/3}$, off-center observer position Dist = 68 Mpc ($\chi^2 = 615$) ($\alpha = 0$ case (dust) excluded.

Position of the center of symmetry (inhomogeneity)- model IIA

Best fit position: declination $\delta = -65.75^{\circ}$ and R.A. is $a = 187.33^{\circ}$. North Celestial Hemisphere (left), South Celestial Hemisphere (right), Meridian line $(\delta = 0)$ in bold. In galactic coordinates: $(l, b) = (300.66^{\circ}, -2.98^{\circ})$.

Position of the center of symmetry (inhomogeneity)- model IIB

Best fit position: $\delta = 69.35^{\circ}$, $a = 8.39^{\circ}$. In galactic coordinates: $(l, b) = (121.35^{\circ}, 6.53^{\circ}).$

- Dark flow direction (Watkins et al. 2009) at $(l, b) = (287 \pm 9, 8 \pm 6)$
- Dark energy dipole (Mariano et al. 2012) at (l.b) = (309, -15)
- Fine structure α dipole (Webb et al. 2011) at (l, b) = (320, -11)
- kSZ effect on CMB (Kashlinsky et al. 2010) at $(l, b) = (296 \pm 13, 140 \pm 13)$
- Dark flow direction (Turnball et al. 2012) at $(l, b) = (319 \pm 18, 70 \pm 14)$

5. More tests in progress - central observer (BAO, CMB shift parameter).

The luminosity distance for a central observer $r_0 = 0$ is (same as Friedmann)

$$d_L = (1+z)a_0r \ , \tag{39}$$

and the distance modulus is

$$\mu(z) = 5\log_{10} d_L(z) + 25. \tag{40}$$

From the null geodesic equations we have (model IIA)

$$r = c \int_{a}^{a_{0}} \frac{da}{\sqrt{c^{2} A^{2} a^{1-3w} - \beta c^{2} a^{3}}} = r = \frac{c}{H_{0} a_{0}} \int_{a/a_{0}}^{1} \frac{dx}{\sqrt{\Omega_{0} x^{1-3w} + (1 - \Omega_{0}) x^{3}}}$$
(41)

where $x \equiv a/a_0$. Using the definition of redshift (29) one can rewrite (41) as

$$z(x) = \frac{1}{x} - 1 + \frac{\Omega_0 - 1}{4} \left[\int_{a/a_0}^1 \frac{dx}{\sqrt{\Omega_0 x^{1-3w} + (1 - \Omega_0)x^3}} \right]^2 , \quad (42)$$

Inhomogeneous pressure models mimicking ΛCDM universe – p. 32/44

Combined tests - luminosity distance, apparent magnitude

and so the luminosity distance (39) reads as

$$d_L(x) = \frac{c(1+z)}{H_0} \sqrt{\frac{4[z(x)+1-1/x]}{\Omega_0 - 1}} \quad . \tag{43}$$

The shift parameter is defined as:

$$\mathcal{R} = \frac{l_1^{\prime TT}}{l_1^{TT}} \quad , \tag{44}$$

where l_1^{TT} – the temperature perturbation CMB spectrum multipole of the first acoustic peak in inh. pressure model l_1^{TT} – the multipole of a reference flat standard Cold Dark Matter model. The multipole number is related to an angular scale of the sound horizon r_s at

decoupling by

$$\theta_1 = \frac{r_s}{d_A} \propto \frac{1}{l_1} \,. \tag{45}$$

For our Stephani model the angular diameter distance is given by

$$d_A = \frac{a_{\rm dec}}{V(t_{dec}, r_{dec})} r_{\rm dec}$$
(46)

with $r_{\rm dec}$ given by (41) taken at decoupling.

Inhomogeneous pressure models mimicking Λ CDM universe – p. 34/44

Using the above, we may write that for our Stephani models the shift parameter is

$$\mathcal{R} = \frac{2cV(t_{dec}, r_{dec})}{H_0 \sqrt{\Omega_0} r_{dec}} \,. \tag{47}$$

Finally, the rescaled shift parameter is

$$\bar{\mathcal{R}} = \frac{H_0 \sqrt{\Omega_0} r_{\text{dec}}}{c V(t_{dec}, r_{dec})} \,. \tag{48}$$

The WMAP data gives $\bar{\mathcal{R}} = 1.70 \pm 0.03$ (Wang, Mukherjee 2006).

One calculates the distortion of a spherical object in the sky without knowing its true size by measuring its transverse extent using the angular diameter distance, r

$$r = \frac{l}{\Delta\theta} , \qquad (49)$$

where l and $\Delta \theta$ are the linear and angular size of an object, and its line-of-sight extent, Δr , using the redshift distance

$$\Delta r = \frac{c\Delta t}{a(t)} \tag{50}$$

(see e.g. Nesseris (2006)). As a result one can define the volume distance, D_V , as

$$D_V^3 = r^2 \Delta r \quad . \tag{51}$$

Eisenstein et al. (2005) gave $D_V(\Delta z = z_{BAO} = 0.35) = 1370 \pm 64$ Mpc (an acoustic peak for 46748 luminous red galaxies (LRG) selected from the SDSS (Sloon Digital Slav Survey)

Inhomogeneous pressure models mimicking ΛCDM universe – p. 36/44

Inhomogeneous pressure - combined tests (SNIa, RD, BAO, shift parameter)

Inhomogeneous pressure - combined tests: results and improvements

- Stephani model fits well the data for the SNIa, redshift drift, and BAO (contours overlap at 1σ CL).
- It cannot fit the existing observational data and recover at the same time the shift parameter features of the Λ CDM model (at least within 1 σ CL).
- Way out: replace constant barotropic index w by $w_1(a)$.
- One assumes that $w_1(a)$ suddenly changes somewhere between z = 5 and z_{dec} , and then remains constant.

An example of a barotropic index parametrization $w_1(a)$ which can fit the data is:

$$w_1(a) = w + \frac{w_0}{2} \left(1 + \tanh[\lambda(a_{tr} - a)]\right)$$
 (52)

where w, w_0, λ , and a_{tr} are constants. Here: $\lambda = 40, a_{tr} = 0.08, w_0 = 0.1$, w = -0.1 and $\Omega_{inh} = 0.68, z_{tr} \sim 10.66$.

Inhomogeneous pressure models mimicking Λ CDM universe – p. 39/44

Inhomogeneous pressure models - combined tests for $w_1(a)$

Inhomogeneous pressure models mimicking Λ CDM universe – p. 40/44

The general inhomogeneous pressure metric

$$ds^{2} = -\frac{a^{2}}{\dot{a}^{2}} \frac{a^{2}}{V^{2}} \left[\left(\frac{V}{a} \right)^{\cdot} \right]^{2} dt^{2} + \frac{a^{2}}{V^{2}} \left[dx^{2} + dy^{2} + dz^{2} \right] , (53)$$

$$V(t, x, y, z) = 1 + \frac{1}{4} k(t) \left\{ \left[x - x_{0}(t) \right]^{2} + \left[y - y_{0}(t) \right]^{2} + \left[z - z_{0}(t) \right]^{2} \right\} ,$$

with x_0, y_0, z_0 being arbitrary functions of time is just a generalization of both the FRW and SS Stephani metrics in isotropic coordinates.

It has no symmetries acting on spacetime.

The center of symmetry changes its position from slice to slice.

6. Conclusions

- Viable and complementary to LTB cosmologies which can drive acceleration.
- Clear difference against LTB for redshift drift (can be tested by very large telescopes and GW detectors).
- Comparison with the 557 Union2 supernovae data restricts the position of non-centrally placed observers. Best fit values are: Dist = 341Mpc (model IIA) with inhomogeneity density $\Omega_{inh} = 0.77$ (model IIA) and Dist = 68Mpc with inhomogeneity parameter $\alpha = 7.31 \cdot 10^{-9}$ $(s/km)^{2/3}Mpc^{-4/3}$ (model IIB).
- Gives a dipole which is directed at $(l, b) = (300.66^\circ, -2.98^\circ)$ (model IIA) and $(l, b) = (121.35^\circ, 6.53^\circ)$ (model IIB) and can be compared (if aligned) with other dipoles (dark energy, dark flow, varying- α dipole, etc.)
- Stephani model fits well the data for SNIa, redshift drift, shift parameter, and BAO provided a specific parametrization for w = w(a) is applied.
- Can even model total spacetime inhomogeneity

Thank You!

Physical interpretation of inhomogeneous pressure models

- A fluid with spatially varying equation of state (spatially varying vacuum energy like Λ) is assumed which gives a nongravitational force in the Universe (which manifests as non-zero acceleration of comoving observers).
- Inhomogeneous pressure models can be considered as a kind of interior of a TOV exotic star filled with matter like generalized (anti)-Chaplygin gas $p = \pm A^2/\varrho^{\alpha}$ (A = const.) (e.g. Kamenschchik et al. 2004, 2008).
- In these models there exists a static spherically symmetric configuration in which the central pressure at r = 0 was constant, while on some shell of constant radius r_s it became minus infinity (which is an analogue of a FD singularity). Everywhere between r = 0 and $r = r_s$, the pressure is lower than at the center, so that the particles are accelerated away which is exactly the effect which is present in the inhomogeneous pressure model.
 - There is also an ideal gas interpretation of these models (Sussmann 2000).