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Outline

1. Context: GS as a theorem about a nonexistent double
fibration.

2. A result in 2n-dim’l conformal geometry:
I Taghavi–Chabert gave a necessary (too weak!) condition for

algebraic speciality (to be defined);
I we shall state a sufficient (too strong!) one;
I both coincide for 2n = 4.

Reference GS thm: a conformally Einstein conformal complex
fourfold has algebraically special SD Weyl curvature if and only if it
admits an integrable distribution of SD null planes.
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Fibration

Classical twistor fibration (complexified):

FlC(1, 2, 4)

GrC(2, 4) P3
C
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GrC(2, 4) is a conformal compactification of complexified
Minkowski spacetime.
p identifies with the bundle of self-dual null planes:

(sections of p) ' (SD null rk 2 distributions)

Kerr’s theorem:(
surfaces in P3

C

)
' (integrable SD null rk 2 distributions)
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Kerr
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Locally:

X ⊂ P3
C surface  q−1X ⊂ FlC(1, 2, 4) hypersurface

I a union of fibres of q,
I transverse to fibres of p

q−1X = Graph(ζ) for a section ζ of p,
corresponding to the SD null rk 2 distribution

N = dp|q−1X ker dq =⇒ integrable
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G = SL(4,C), P,Q pair of parabolic subgroups.
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Curved version: replace homogeneous spaces with corresponding
Cartan geometries.
I G/P  conformal complex 4-fold M,
I G/(P ∩Q) bundle p : C → M of SD null 2-planes.

Tautological rk 2 distribution: D ⊂ p∗TM ' TC / ker dp.
Lift D ⊂ TC splits naturally: D = ker dp ⊕A .
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A integrable ⇐⇒ M ASD

Obstruction: Λ2A
[ , ]−−→ D/A ' ker dp.

Identify:
I PS+ ' C projectivisation of half-spinor bundle,
I Ψ+ ∈ Γ(M, Sym4 S∗+) ' Γ(M,OC (4)) SD Weyl,
I Λ2A ∗ ⊗ ker dp ' OC (4).

The obstruction is precisely Ψ+.
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Goldberg–Sachs

Kerr: if Ψ+ = 0 everywhere, integrable SD rk 2 null distributions
↔ hypersurfaces in C transverse to ker dp, which are unions of
2-dim’l integral manifolds of ker dq.

In general: still, integrable SD rk 2 null distributions
↔ hypersurfaces in C transverse to ker dp, which are unions of
2-dim’l integral manifolds of A .

Goldberg–Sachs: if M conformally Einstein (actually less), Ψ+

vanishes to first order along every such hypersurface.

GS is a theorem about the nonexistent double fibration.
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Generalisation

Broadest setting: parabolic geometry.

I G (connected, simply-connected) complex semi-simple Lie
group,

I P,Q ⊂ G parabolic subgroups containing a single Borel
subgroup.

I Curving the double fibration G/P
p←− G/(P ∩Q)

q−→ G/Q.

I M Cartan geometry modelled on G/P ; M
p←− C natural

bundle with fibre C = P/(P ∩Q).
I Analogue of (SD) Weyl curvature:

Ψ ∈ Γ(C ,V )

V is a vec. bdl. on C induced from a homogeneous vec. bdl.
V on C .

I Classically: C = P1
C and V = O(4).
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Generalisation

Ψ is typically the obstruction to the existence of the right leg in

C

M ?

�
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p
@
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q?

Desired: if M satisfies ?, then Ψ vanishes to r -th order along every
section of p satisfying †.

Classically ? is ‘being conformally Einstein’ (actually less),
† is integrability of the corresponding SD rk 2 null distribution.

Nurowski: classical † ⇐⇒ being parallel with respect to some
Weyl connection.
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A result in conformal geometry

Theorem
Let M be a 2n-dimensional complex conformal manifold, C → M
the bundle of SD null n-planes, and ζ : C → M a section parallel
with respect to some Weyl connection.

Assume M is conformally
Einstein (actually less). Then the (SD if n = 2) Weyl tensor,
viewed as a section of a vector bundle over C , vanishes to first
order along ζ.
For n = 2 the condition on ζ is equivalent to integrability of
corresponing null distribution. For n > 2 it is stronger.
Taghavi-Chabert: existence of integrable SD null rk n distribution
necessary (but not sufficient) for algebraic speciality of the Weyl
tensor (defined as above).
This theorem: additionally assuming existence of an adapted Weyl
connection gives a sufficient (but not necessary) condition.
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Setup

G = SpinC(2n+ 2), P = Stab `, Q = StabN
where ` ⊂ N ⊂ C2n+2 null line and SD null n-plane

P-grading: g = g−1 ⊕ g0 ⊕ g1, p = g0 ⊕ g1, g0 ' co(2n).

(P,Q)-bigrading:

g−1 = g−1,−1⊕g−1,0, g0 = g0,−1⊕g0,0⊕g0,1, g1 = g1,0⊕g1,1.

This extends to representations; in particular the space of algebraic
Weyl tensors has components in degrees (0,−1), (0, 0), . . . , (0, 4).

(algebraic Weyl tensors) ' Γ(C ,V ) C = P/(P ∩Q)

filtration by Q-degree ' filt. by order of vahishing at origin
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Reduction

M conformal complex 2n-fold, ζ : M → C section
 reduction of the frame bundle to a (P ∩Q)-structure Eζ .

We can express:
I SD rk n null distribution as

Eζ ×P∩Q g−1,0 ⊂ Eζ ×P∩Q g−1 ' TM

I Weyl tensor as

Ψ ∈ Γ(C ,V ) ↔ Ψ : Eζ
P∩Q−−→ Γ(C ,V )

ord. of vanishing along ζ = depth in filt. by Q-deg.

I Weyl connections preserving ζ as torsion-free principal
connections on Eζ .
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Consequences

Fix a Weyl connection preserving ζ : M → C . Its curvature

R : Eσ → Λ2g1 ⊗ g0

has vanishing projection onto Λ2g1 ⊗ g0,−1.

Lemma
Let R ∈ Λ2g1 ⊗ g0 be an algebraic curvature tensor, with Weyl and
Schouten components Ψ and P ∈ g1 ⊗ g1. Suppose R projects
trivially onto Λ2g1 ⊗ g0,−1. Then:
1. Ψ = 0 mod Q-degree 0,
2. P is skew mod Q-degree 1,
3. Ψ = −P mod Q-degree 1

for suitable inclusion of Λ2g1,0 into the Q-degree 0 subspace of
algebraic Weyl tensors.
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Integrability condition

∇ Weyl connection, P Schouten tensor, A = d∇P Cotton tensor.

Viewing Ψ mod Q-deg 1 as a map Eσ → Λ2g1,0:

Ψ + P = 0 mod Q-degree 1
∇Ψ + αA = 0 mod Q-degree 1

Ψ⊗Ψ + β∇A = 0 mod Q-degree 1

where α, β are some innocuous antisymmetrisation operators.

Transforming to an arbitrary Weyl connection ∇̂:

Ψ⊗Ψ−Alt P̂⊗Ψ + λÂ = 0 mod Q-degree 1

where λ is a first-order linear differential operator preserving
Q-degree.



Integrability condition

∇ Weyl connection, P Schouten tensor, A = d∇P Cotton tensor.

Viewing Ψ mod Q-deg 1 as a map Eσ → Λ2g1,0:

Ψ + P = 0 mod Q-degree 1

∇Ψ + αA = 0 mod Q-degree 1
Ψ⊗Ψ + β∇A = 0 mod Q-degree 1

where α, β are some innocuous antisymmetrisation operators.

Transforming to an arbitrary Weyl connection ∇̂:
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Conclusion

Choosing ∇̂ to be a Levi-Civita connection for a metric in the
conformal class: Ψ⊗Ψ + λÂ = 0 mod Q-degree 1.

Conclusion: assume the set of Weyl connections includes:
1. a connection ∇ with ∇ζ = 0,
2. a Levi-Civita connection ∇̂ with Â = 0 mod Q-degree 1.

Then Ψ = 0 mod Q-degree 1.

This proves the Theorem.
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