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1. Context: GS as a theorem about a nonexistent double
fibration.
2. A result in 2n-dim’l conformal geometry:
» Taghavi—Chabert gave a necessary (too weak!) condition for
algebraic speciality (to be defined);
» we shall state a sufficient (too strong!) one;
» both coincide for 2n = 4.

Reference GS thm: a conformally Einstein conformal complex
fourfold has algebraically special SD Weyl curvature if and only if it
admits an integrable distribution of SD null planes.
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Classical twistor fibration (complexified):

Flc(1,2,4)

N

GI‘C (2, 4) ][)03:

Grc(2,4) is a conformal compactification of complexified
Minkowski spacetime.
p identifies with the bundle of self~dual null planes:

(sections of p) ~ (SD null rk 2 distributions)
Kerr’'s theorem:

(surfaces in IP}.) ~ (integrable SD null rk 2 distributions)



Kerr

Locally:



Kerr

GI‘C (2, 4) IP%

Locally:
X C P? surface



Kerr

GI‘C (2, 4) IP%

Locally:
X C ll’% surface ~ q~1X C Flc(1,2,4) hypersurface



Kerr

GI‘C (2, 4) ]P%
Locally:
X C ll’% surface ~ q~1X C Flc(1,2,4) hypersurface
» a union of fibres of g,

> transverse to fibres of p



Kerr

GI‘C (2, 4) IP%

Locally:
X C ll’% surface ~ q~1X C Flc(1,2,4) hypersurface

> a union of fibres of g,
> transverse to fibres of p
g 'X = Graph({) for a section { of p,



Kerr

GI‘C (2, 4) IP%

Locally:
X C ll’% surface ~ q~1X C Flc(1,2,4) hypersurface

» a union of fibres of g,
> transverse to fibres of p

g 'X = Graph({) for a section { of p,
corresponding to the SD null rk 2 distribution

N = dp|g-1x kerdg



Kerr

GI‘C (2, 4) IP%

Locally:
X C ll’% surface ~ q~1X C Flc(1,2,4) hypersurface

» a union of fibres of g,
> transverse to fibres of p

g 'X = Graph({) for a section { of p,
corresponding to the SD null rk 2 distribution

N =dp|g1xkerdg = integrable
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Klein/Cartan

G =SL(4,C), P, Q pair of parabolic subgroups.

G/(PNQ)
p q
G/P/ \G/Q

Curved version: replace homogeneous spaces with corresponding
Cartan geometries.

» G/P ~ conformal complex 4-fold M,
» G/(PNQ) ~ bundle p: € — M of SD null 2-planes.

Tautological rk 2 distribution: 2 C p*TM ~ T% / ker dp.
Lift 2 C T% splits naturally: 2 = kerdp ® o7 .
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Obstruction: A2¢/ ——» L.

Identify:

@/sz% ~ ker dp.

» IPS, ~ & projectivisation of half-spinor bundle,
» ¥, € T(M,Sym* St) ~T(M, Gy (4)) SD Weyl,
» A27/* @ kerdp =~ Oy (4).

The obstruction is precisely ¥ .
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Broadest setting: parabolic geometry.

» G (connected, simply-connected) complex semi-simple Lie
P, Q C G parabolic subgroups containing a single Borel
subgroup.

Curving the double fibration G/P < G/(PN Q) L G/Q.
M Cartan geometry modelled on G/P; M <= ¢ natural
bundle with fibre C = P/(P N Q).

Analogue of (SD) Weyl curvature:

v

v
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v

Yel(¢,7)

¥ is a vec. bdl. on € induced from a homogeneous vec. bdl.
V on C.

Classically: C =P¢ and V = 0(4).

v
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Generalisation

Y is typically the obstruction to the existence of the right leg in
Cg ?
p q?
M / \ ?
Desired: if M satisfies *, then ¥ vanishes to r-th order along every

section of p satisfying 1.

Classically * is ‘being conformally Einstein’ (actually less),
t is integrability of the corresponding SD rk 2 null distribution.

Nurowski: classical T <= being parallel with respect to some
Weyl connection.
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A result in conformal geometry

Theorem

Let M be a 2n-dimensional complex conformal manifold, € — M
the bundle of SD null n-planes, and { : € — M a section parallel
with respect to some Weyl connection. Assume M is conformally
Einstein (actually less). Then the (SD if n = 2) Weyl tensor,
viewed as a section of a vector bundle over €, vanishes to first
order along (.

For n = 2 the condition on ( is equivalent to integrability of
corresponing null distribution. For n > 2 it is stronger.
Taghavi-Chabert: existence of integrable SD null rk n distribution
necessary (but not sufficient) for algebraic speciality of the Weyl
tensor (defined as above).

This theorem: additionally assuming existence of an adapted Weyl!
connection gives a sufficient (but not necessary) condition.
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Setup

G = Spinc(2n+2), P =Stab{, @ = Stab N
where ¢ C N C C2"*2 null line and SD null n-plane

P-grading: g = g1 ® go ® g1, b = go D g1, go ~ co(2n).

(P, Q)-bigrading:

g-1=0-1,-1DPg-10 %o =00-1DPgooDgo1. g1 =g1,0Dg11.
This extends to representations; in particular the space of algebraic
Weyl tensors has components in degrees (0, —1), (0,0),..., (0,4).

(algebraic Weyl tensors) ~ T'(C, V) C=P/(PNQ)
filtration by Q-degree =~ filt. by order of vahishing at origin
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M conformal complex 2n-fold, { : M — % section
~~ reduction of the frame bundle to a (P N @)-structure &.
We can express:

» SD rk n null distribution as

&7 x e g-10 C &7 xRy 1~ TM

» Weyl tensor as
PNQ
Yel(¢,7) & ¥:6——T(C,V)

ord. of vanishing along { = depthin filt. by Q-deg.

» Weyl connections preserving { as torsion-free principal
connections on &.
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Consequences

Fix a Weyl connection preserving { : M — €. Its curvature
R: & — N1 @ go

has vanishing projection onto A%g; ® go, 1.

Lemma
Let R € A%g; ® go be an algebraic curvature tensor, with Weyl and
Schouten components ¥ and P € g1 ® g1. Suppose R projects
trivially onto A%2g1 @ go,_1. Then:

1. ¥ =0 mod Q-degree 0,

2. P is skew mod Q-degree 1,

3. ¥ = —P mod Q-degree 1

for suitable inclusion of A®g; ¢ into the Q-degree O subspace of
algebraic Weyl tensors.
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Integrability condition

V Weyl connection, P Schouten tensor, A = dVP Cotton tensor.
Viewing ¥ mod Q-deg 1 as a map &, — A2gyo:

Y+P = 0 mod Q-degreel
VY +aA = 0 mod Q-degree 1
YRY+BVA = 0 mod Q-degreel

where «, B are some innocuous antisymmetrisation operators.
Transforming to an arbitrary Weyl connection V:
YOF - AltPQ¥ +AA=0 mod Q-degree 1

where A is a first-order linear differential operator preserving
Q-degree.
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Conclusion

Choosing V to be a Levi-Civita connection for a metric in the
conformal class: ¥ @ ¥ + AA = 0 mod Q-degree 1.

Conclusion: assume the set of Weyl connections includes:

1. a connection V with V{ =0,

2. a Levi-Civita connection V with A = 0 mod Q-degree 1.
Then ¥ = 0 mod Q-degree 1.

This proves the Theorem.
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