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1 Geometry of the cosmological models

The Robertson – Walker (R–W) models
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Figure 1: Expansion in the R–W models. Upper picture: The velocity of
expansion of each matter shell is proportional to its distance from
the observer. Lower picture: The Big Bang occurs simultaneously
in the coordinates of (1.1).
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The metric of this model is

ds2 = dt2 − S2(t)

[
dr2

1− kr2
+ r2

(
dϑ2 + sin2 ϑdφ2

)]
. (1.1)

If pressure is zero, then S(t) obeys

S,t
2 = 2GM/(c2S)− k + ΛS2/3, (1.2)

where k andM are arbitrary constants and Λ is the cosmological
constant.

The mass density is constant throughout space and changes
only with time.
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The Lemâıtre – Tolman (L–T) model
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Figure 2: Expansion in the L–T model. Upper picture: The veloc-
ity of expansion is not correlated with the radius of a matter
shell. Lower picture: The Big Bang is, in the coordinates of (1.3),
non-simultaneous =⇒ the age of matter particles depends on r.
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The metric of the Lemâıtre – Tolman [1, 2] model is

ds2 = dt2 − R,r
2

1 + 2E(r)
dr2 −R2(t, r)

(
dϑ2 + sin2 ϑdφ2

)
, (1.3)

where R(t, r) obeys (from the Einstein equations with p = 0):

R,t
2 = 2E(r) + 2M(r)/R− ΛR2/3. (1.4)

M(r) and E(r) are arbitrary functions. The integral of (1.4)
contains one more arbitrary function, tB(r) – the “timetable” of
the Big Bang. For example, when E = 0 = Λ:

R = (9M/2)1/3 (t− tB(r))
2/3 . (1.5)

The R–W limit of L–T is

M = const× r3, E = −kr2/2, tB = const,

R = rS(t). (1.6)
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The Szekeres models
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Figure 3: Expansion in the Szekeres models. Upper picture: The velocity
of expansion is not correlated with the radius of a matter shell and the
shells are not concentric. Lower picture: The “timetable” of the initial
explosion looks the same as in the L–T model.
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R,t
2 = 2E(r) + 2M(r)/R− ΛR2/3. (1.4)

The metric form of the Szekeres models is [3]:

ds2 = dt2 − (R,r −RE ,r /E)2

1 + 2E(r)
dr2 − R2

E2

(
dx2 + dy2

)
, (1.7)

where

E def
=
S(r)

2

[(
x− P (r)

S(r)

)2

+

(
y −Q(r)

S(r)

)2

+ 1

]
; (1.8)

the function R(t, r) obeys the same evolution equation (1.4) as in
the L–T model; the P (r), Q(r) and S(r)) are arbitrary functions.

The Szekeres model has in general no symmetry. It repro-
duces the L–T model in the limit of (P,Q, S) being constant.

The mass distribution in the Szekeres models can be inter-
preted as a superposition of a mass-monopole and a mass-dipole.
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Please note:

The L–T and Szekeres models are not meant to be replace-
ments for the Robertson – Walker models.

They are meant to model perturbations on the R–W back-
ground within the exact theory.
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2 Formation and evolution of structures

The usual method to check a theory against observation is:

• Assume initial conditions for a physical system at t = t1;

• Use the evolution equations to calculate the state of the sys-
tem at t2 > t1;

• Compare the calculated result with the measurements at t2;

• If the calculations and measurements do not agree, change
the initial conditions to try a more precise “shot”.

The L–T and Szekeres models allow one to use input from
both t1 and t2 to construct a model that evolves a given state
at t1 into a given state at t2. Examples:

Data at t1 Data at t2

density distribution density distribution

velocity distribution density distribution

velocity distribution velocity distribution
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R,t
2 = 2E(r) + 2M(r)/R. (1.4)

We will demonstrate the working of this method for the
density → density evolution [4] – [6].

We take the solution of (1.4) in the form

t− tB(r) =

∫
dR√

2E + 2M/R
(2.1)

(see next page). In this example, we consider E > 0 only.

The mass-density at any instant t0 can be converted (numeri-
cally) to R(t0, r), withM(r) being used as the radial coordinate:

κρ =
2M,r
R2R,r

≡ 6

(R3) ,M

⇐⇒ R3 =

∫ M

0

6

κρ(M̃)
dM̃. (2.2)
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R,t
2 = 2E(r) + 2M(r)/R. (1.4)

The solutions of (1.4) at t = ti, i = 1, 2 are

tB = ti−
M

(2E)3/2

[√
(1 + 2ERi/M)2 − 1− arcosh(1 + 2ERi/M)

]
,

(2.3)

where Ri
def
= R(ti,M).

We subtract (2.3) at t = t1 from (2.3) at t = t2 and obtain√
(1 + 2ER2/M)2 − 1− arcosh(1 + 2ER2/M)

−
√

(1 + 2ER1/M)2 − 1 + arcosh(1 + 2ER1/M)

=
(2E)3/2

M
(t2 − t1) . (2.4)

Eq. (2.4) defines the function E(M, t1, t2, R1, R2).

Substituting it in (2.3) we find tB(M, t1, t2, R1, R2).

E and tB define the L–T model that evolvesR(t1, r) into R(t2, r).
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√
(1 + 2ER2/M)2 − 1− arcosh(1 + 2ER2/M)

−
√
(1 + 2ER1/M)2 − 1 + arcosh(1 + 2ER1/M)

=
(2E)3/2

M
(t2 − t1) . (2.4)

The solution of (2.4) with E > 0 exists provided t2 − t1 is
sufficiently small. The solution is then unique.

When t2 − t1 is too large, then the same two states can be
connected by an L–T evolution with E < 0.
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This approach was applied to the formation of presently ex-
isting structures out of small density or velocity perturbations of
a homogeneous background existing at last scattering [4, 5, 6].

The best consistency with observations was achieved for ga-
laxy clusters. As a representative we chose the A199 cluster, for
which the “Universal Density Profile” is available.

The initial mass was assumed to be 0.01 × the present mass.

The initial density amplitude ∆ρ/ρ = 10−5 and velocity am-
plitude ∆v/v = 10−4 were within the limits set by the CMB
observations.

Velocity perturbations are 102 times more efficient
in generating structures than density perturbations. This
runs counter to the common wisdom in astronomy.

When density and velocity perturbations are simultaneously
present, a profile reversal can occur: a void can evolve into
a condensation, and vice versa.
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3 Drift of light rays induced by nonsymmet-

ric expansion

Consider two light rays in the Szekeres spacetime, the second
one emitted by the same source later by τ , both arriving at the
same observer. The trajectory of the first ray is

(t, x, y) = (T (r), X(r), Y (r)), (3.5)

the corresponding equation for the second ray is

(t, x, y) = (T (r) + τ(r), X(r) + ζ(r), Y (r) + ψ(r)). (3.6)

=⇒ The second ray intersects a given hypersurface r = r0 not
only later, but, in general, at a different comoving location.

=⇒ In general, the two rays will intersect different
sequences of intermediate matter worldlines.

The same is true for nonradial rays in the L–T model.
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=⇒ The second ray is emitted in a different direction and is
received from a different direction by the observer.

=⇒ An observer in a general Szekeres spacetime should see each
light source slowly drift across the sky [8].

The absence of this drift is a property of exceptional
directions, for example of radial directions in an L–T model.
In a general Szekeres spacetime such directions do not exist.

The only spacetimes in the Szekeres family in which
there is no drift for all null geodesics are the Fried-
mann models.

=⇒ Observational detection of the drift would be evi-
dence of inhomogeneity of the Universe on large scales.

With the technology now being developed, measurements of the
drift rate will be possible (see the numerical example below).
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4 A numerical example of the drift
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Figure 4: The L–T configuration used in the example. The
present distance from the centre of the void to the observer and
to the light source is L = 3.5 Gpc.
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Figure 5: Rays projected on the space t = now along the dust
flow lines.

Middle line: ray received now.
Upper line: ray received 5× 109 years ago.
Lower line: ray received 5× 109 years in the future.

17



The rate of change of the ray direction under the most favourable
conditions would be 1.5× 10−6 arcsec/year.

With the Gaia accuracy1 of 5− 20× 10−6 arc sec, a few
years would be needed to detect this effect.

1http://sci.esa.int/science-e/www/area/index.cfm?fareaid=26
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5 Explaining “accelerated expansion” of the

Universe by inhomogeneous mass density

The hypothesis of accelerated expansion of the Universe arose
from observations of type Ia supernovae. Their maximal abso-
lute luminosity is assumed to be the same for all.

The observed luminosities were inconsistent with the Λ =
0 Friedmann model. Using other Friedmann models, the
best fit to the observed luminosities was achieved when [11]

• k = 0,

• 32% of the energy density comes from matter (visible or dark)

• 68% of the energy density is provided by an entity that was
termed “dark energy”. It plays the role of the cosmological
constant, but may depend on time (in an unknown way).

↑ Corrected numerical data taken from the later measurements
by the Planck satellite (2013, [11]).
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=⇒ The “accelerated expansion” of the Universe is not
an observed phenomenon, but an element of interpre-
tation of observations. It follows from the assumption
that the model must be in the Friedmann class.

If we can re-create the observed luminosity vs. redshift rela-
tion in a decelerating inhomogeneous model, then the “acceler-
ated expansion” becomes an illusion.

The two examples presented below [12, 13, 14, 15] show how
the spurious accelerated expansion is reproduced using just one
of the two arbitrary functions of the L–T model.
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Example 1: E/r2 = const is the same as in the R–W
models. The tB(r) is defined so that the DL(z) relation of the
ΛCDM model

DL(z) =
1 + z

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

, (5.1)

is reproduced, with Ωm = 0.32 and ΩΛ = 0.68; H0 is the present
value of the Hubble coefficient.

The trick is that H0, Ωm and ΩΛ are taken from observations,
but DL(z) is taken from an L–T model with Λ = 0, and this
defines tB(r). Equations for tB(r) are then solved numerically.
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Figure 6: Example 1: The past light cone of the central observer in the L–T
model that duplicates the DL(z) relation using only tB(r). The lower curve
is the numerically calculated tB(r), the horizontal straight line marks the Big
Bang of the ΛCDM model.
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In the L–T model the Big Bang occurs progressively later
when the position of the observer is approached.
=⇒ The time between the Big Bang and the instant of crossing
the observer’s past light cone becomes progressively shorter in
L–T than in R–W.
=⇒ The expansion velocity at the light cone in the L–T model is
everywhere greater than in a Friedmann model with Λ = 0 = k,
and the difference is increasing toward the observer.
=⇒ Instead of increasing with time, the expansion velocity in-
creases with position in space.

=⇒ Had we used the L–T model to interpret the ob-
servations, the “accelerated expansion” would not be
implied, and there would be no need for “dark energy”.

23



Example 2: tB(r) is constant, as in an R–W model. The
equation

DL(z) =
1 + z

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

, (5.1)

is this time used to define the L–T function E(r).

In this case, the graph of the light cone and of the Big Bang
does not look different from the Friedmann case; the difference
is in the shape of E/r2, which is constant in Friedmann.

Recall the L–T metric:

ds2 = dt2 − R,r
2

1 + 2E(r)
dr2 −R2(t, r)

(
dϑ2 + sin2 ϑdφ2

)
, (1.3)

The Friedmann limit of it is 2E = −kr2 and R(t, r) = rS(t).

=⇒ With non-constant E/r2, each L–T matter shell
evolves by a different Friedmann equation.
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Figure 7: The function E/r2 = −kF in Example 2. The observer is at r = 0,
the past light cone of the observer touches the Big Bang at r ≈ 1.1.

E/r2
def
= − kF is different at every r.

The |kF | decreases all the way to the BB =⇒ Shells of mat-
ter closer to the observer evolve by a Friedmann equation cor-
responding to larger |kF |.

=⇒ They are ejected from the BB with larger dS/dt than farther
shells, and so intersect the observer’s past light cone with a
larger velocity than in a model with constant kF .

=⇒ Accelerated expansion is imitated – again without introduc-
ing “dark energy”.
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6 A brief conclusion

The theory of relativity has much more to offer to cosmology
than the simplistic R–W models found 90 years ago.

Relativistic cosmology made a lot of progress since then.

The inhomogeneous models allow us to explain many of the
observed phenomena without introducing any “new physics”.
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