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Motivation: ‘twin paradox’

The ‘twin paradox’ in SR has 3 levels of comprehending:
— why there is at all the asymmetry between the twins,
— why the accelerated twin is younger (‘reverse triangle inequality’),
— what happens in a curved spacetime.
Curvature ⇒ multitude od diverse results. Purely geometrical problem :
which timelike curve joining two given points is the longest one? There is
no shortest timelike line.
The problem deeply enters into the geodesic structure of the spacetime —
this is why it is worth studying.
The problem: local and global. Here: only a brief introduction.
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Locally maximal timelike curves

A bundle of nearby timelike curves emanating from p and intersecting at
p1, we seek for the longest one. It contains a geodesic γ0, γ0(0) = p,
γ0(s1) = p1.
The bundle may contain other geodesics γε infinitesim. close to γ0,
|ε| � 1.
xµ(s) — coordinates of γ0, uµ(s) — tangent to γ0,
x̄µ(s, ε) - coordinates of γε,

x̄µ(s, ε) = xµ(s) + εZµ(s) + δ2xµ(s) + . . .+ δnxµ(s) + . . . ,

Zµ(s) — the connecting vector in the linear approximation, (the geodesic
deviation vector , Jacobi vector field), Zµ uµ = 0,
the n−th deviation δnxµ = O(εn) for n > 1 is not a vector.

Leszek M. SOKO LOWSKI and Zdzis law A. Golda (OA UJ)POTOR Spa la 2014 30. VI. 2014 3 / 14



Zµ(s) satisfies the geodesic deviation equation (GDE)

D2

ds2
Zµ = Rµ

αβγ uα uβ Zγ

(derived in the linear approximation).
If Zµ 6= 0 and Zµ(0) = Zµ(s0) = 0 for 0 < s0 < s1 ⇒
— either γε intersects γ0 at q = γ0(s0) or
— γε is closer to γ0 at q than at ε–distance.
In both cases it is interpreted that γε intersects γ0 at q on the segment
pp1.
q = γ0(s0) — point conjugate to p on γ0.
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Proposition (Hawking & Ellis)
A timelike geodesic γ0 has the locally maximal length from p to p1 iff
there is NO point conjugate to p on the segment pp1.
Conversely:
if there is a point q conjugate to p on the segment pp1 of γ0 then there
exists a nearby timelike curve λ (not necessarily geodesic) from p to p1

which is longer than γ0, s(λ) > s(γ0).
The locally longest curve (geodesic) always exists in globally hyperbolic
spacetimes.
CAdS — exist pairs of points connected by timelike lines but none is a
geodesic and none is maximal (neither locally nor globally).
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Criterion (Hawking & Ellis)
If Rαβ uα uβ ≥ 0 (SEC) on a timelike geodesic γ and if the tidal force
Rµανβ uα uβ 6= 0 at some point p0 on γ0, then there is a pair of conjugate
points p and q on γ0 (if sufficiently extended).
LOCALLY LONGEST GEODESICS
We seek for maximal segments of geodesics ⇒ seek for conjugate points
⇒ seek for zeros of Jacobi fields Zµ(s).
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γ0 — chosen timelike geodesic, uµ — tangent to γ0.
Replace D2/ds2 in GDE by d2/ds2.
Choose tetrad {eAµ}, A = 0, 1, 2, 3, orthonormal and parallelly transported
along γ0,

e0
µ ≡ uµ, eA

µ eBµ = ηAB = diag(1,−1,−1,−1),
D

ds
eA
µ = 0,

{eaµ} , a = 1, 2, 3 —spacelike triad orthogonal to γ0.
Expand

Zµ =
3∑

a=1

Za ea
µ, then GDE

d2

ds2
Za = −eµa Rµαβγ uα uβ

3∑
b=1

Zb eb
γ ,

Za — 3 Jacobi scalars.
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Killing vector Kµ ⇒ first integral of GDE

Kµ
D

ds
Zµ − Zµ D

ds
Kµ = const.

PROCEDURE
— Choose a spacetime with some some symmetries (Killing vectors).
— Choose geometrically interesting timelike geodesic with explicit
xα = xα(τ), e. g. τ = s.
— Choose the spacelike triad ea

µ as above.
— Solve GDE

d2

ds2
Za = −eµa Rµαβγ uα uβ

3∑
b=1

Zb eb
γ

applying the first integrals and find a generic solution Za(τ).
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— Consider all possible special solutions with Za(τ = 0) = 0 and seek for
their zeros,

Za(τ0) = 0, τ0 > 0.

Then the geodesic xα = xα(τ) is locally maximal on the segment
0 ≤ τ < τ0.
This is a fully algorithmic procedure for checking that the given geodesic
is the unique locally longest curve between given points.
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COMPUTATIONS
— Static spherically symmetric (SSS) spacetimes: de Sitter, CAdS,
Schwarzschild, Reissner–Nordström and Bertotti–Robinson,
— ultrastatic SSS spacetimes: Barriola–Vilenkin monopole,
— cosmological Robertson–Walker spacetimes.
Geodesics: radial and circular (if exist).
A variety of diverse results. Spacetimes with similar symetries may have
different geodesic structure: dS and CAdS.
One generic result:
all stable circular (if exist) geodesics in all SSS spacetimes contain 3
infinite sequences of conjugate points to any initial point and only one
sequence has clear geometric meaning.
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Globally maximal timelike curves

The search for globally longest curve from p to p1 is different conceptually
and in practice.
Ω — the space of all future directed timelike piecewise smooth curves
from p to p1. Each curve λ has length s(λ) > 0.
λ ∈ Ω is globally maximal if it is the longest curve in Ω⇔ its length is
equal to the Lorentzian distance function

s(λ) = d(p, p1).

The maximal curve is always a geodesic (non unique).
In globally hyperbolic spacetimes for any pair p ≺≺ p1 there is globally
maximal geodesic γ ∈ Ω.
In the global problem the conjugate point is replaced by a cut point.
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A geodesic γ, 0 ≤ s < a, is usually not globally maximal beyond some its
segment.
Let

s0 ≡ sup{s ∈ [0, a) : d(γ(0), γ(s)) = s},

if s0 < a⇒ γ(s0) — future timelike cut point of γ(0) on γ.
s0 — the length of the longest maximal segment of γ.
This means that on the segment:
— from γ(0) to all γ(s), s < s0 — γ is the unique globally maximal,
— from γ(0) to γ(s0) — γ is globally maximal (not unique),
— from γ(0) to γ(s1), s1 > s0 — there are curves longer than γ.
The future cut point of p = γ(0) along γ comes no later than the first
future conjugate point to p. A geodesic may contain only the cut point
and no conjugate points.
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Figure: Q — nearest conjugate point of P on γ, A — the future cut point of P,
Γ and γ — two longest timelike geodesics from P to A.
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GLOBAL LORENTZIAN GEOMETRY
Our current knowledge:
There is a number of ‘existence theorems’ on maximal timelike geodesics
in various spacetimes valid if some global conditions are satisfied.
They are not ‘constructive’: do not indicate a computationally effective
procedure for finding out the interesting object ⇒ do not provide analytic
tools to establish if the given geodesic is globally maximal.
This is consequence of the nonlocal nature of the globally maximal curve
— it cannot be identified by a local tool such as a differential equation.
Accessible tools: high symmetry and use of the Gaussian normal geodesic
coordinate frame.
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