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Classical equations

The Einstein equations (gµν is the metric ds2 = gµνdx
µdxν)

Rµν − 1

2
gµνR = 8πGTµν , (1)

with
(Tµν);µ = 0. (2)



RHS of Einstein equations

I phase space distribution of particles

I fields

I fluids



Phase space distribution
If particle’s dynamics is determined by classical evolution
equations, then the conservation law for the energy momentum is
a consequence of the Liouville equation (where Γµνρ are Christoffel
symbols)

(pµ∂xµ − Γk
µνp

µpν∂k)Φ(x , p) = 0. (3)

The formula for the energy-momentum tensor

Tµν =
√
g

∫
dp

(2π)3

1

p0
pµpνΦ, (4)

define the Einstein-Liouville-Vlasov system
g is the determinant of the metric and p0 is determined from the
mass-shell condition pµp

µ = m2 (m is the particle’s mass, we set
c = 1). Greek indices run from 0 to 3, Latin indices denoting
spatial components have the range from 1 to 3, the covariant
derivative is over the space-time, derivatives over the momenta ∂

∂pk

are denoted ∂k and ∂x denotes a derivative over a space-time
coordinate x .



Fluids

Assuming we have a phase space distribution we can define

vµ = 〈pµ〉 (5)

Then,
〈pµpν〉 = 〈1〉uµuν + 〈(pµ − uµ)(pν − uν)〉 (6)

This can be expressed as

Tµν = Euµuν − π(gµν − uµuν) + πµν (7)

where
gµνu

µuν = 1 (8)

Fluids are applied to describe structure formation (we need matter)



Fields

If we have the action W then

Tµν =
δW

δgµν(x)
(9)

For the scalar field

W =

∫
dx
√
g(gµν∂µφ∂νφ− V (φ)) (10)

Classical scalar fields are applied to generate inflation



What if the energy-momentum is not conserved?

Rµν − 1

2
gµνR = Tµν = Tµν

D + T̃µν , (11)

where TD is the energy-momentum of a certain (dark) matter and
T̃ is the energy-momentum of the system of diffusing particles.
From the lhs it follows that

(Tµν
D );µ = −(T̃µν);µ. (12)

Knowing the rhs of we can determine the lhs up to a constant. We
represent TD by a time-dependent cosmological term Λ. A
dynamical relation of the cosmological term to the matter density
seems to be unavoidable for an explanation of the coincidence
problem.



Why diffusion?

I Diffusion equilibrates to a temperature (equilibrium)
state washing out initial conditions

The diffusion on the mass-shell

gµνp
µpν = m2 (13)

The diffusion is generated by the Laplace-Beltrami operator on H+

4H =
1√
G
∂jG

jk
√
G∂k (14)

where
G jk = m2g jk + pjpk (15)

∂j = ∂
∂pj

and G = det(Gjk) is the determinant of Gjk .



The transport equation for the linear diffusion generated by 4H

reads
(pµ∂xµ − Γk

µνp
µpν∂k)Ω = κ24HΩ, (16)

where κ2 is the diffusion constant, ∂xµ = ∂
∂xµ and x = (t, x)



Quantum phase space distributions

If the phase space distribution has the Bose-Einstein or
Fermi-Dirac equilibrium limit which is a minimum of the relative
entropy (related to the free energy ) then the diffusion equation
must be non-linear. The proper generalization reads

(pµ∂xµ − Γk
µνp

µpν∂k)Ω = κ2p0∂j

(
G jkp−1

0 ∂kΩ + βpjΩ(1 + νΩ)
)
,

(17)
where ν = 1 for bosons and ν = −1 for fermions. The classical
(Boltzmann) statistics can be described by ν = 0.



Solutions of linear and non-linear diffusion equations at
finite temperature

We have the time-dependent equilibrium

ΩPL
E =

(
exp(βa2(p + µ))− ν

)−1
(18)

where µ is an arbitrary constant (the chemical potential). In the
ultrarelativistic limit ( a large p) the Planck distribution is the
same as the Jüttner distribution.
For the equilibrium solution we obtain standard Friedmann
cosmology.
There are other solutions of the diffusion equation whose
energy momentum tensor gives different Friedmann equation
for the scale factor a



We solve the conservation equation for Λ then with H = a−1 da
dτ

the Friedmann equation reads

3
8πGH

2 ≡ 3
8πG (a−1 da

dτ )2 = T̃ 00(τ)−
∫ τ
τ0
dra−4∂r (a4T̃ 00) + Λ

8πG (τ0)

= T̃ 00(τ0)− 4
∫ τ
τ0
drH(r)T̃ 00(r) + Λ

8πG (τ0)

(19)
I assume: T̃µν energy-momentum of diffusing particles,
Tµν
D = Λgµν

and (τ is the cosmic time)
ds2 = dτ2 − a2(τ)dx2



Explicit solution

We can find an explicit power-like solution of the
integro-differential equation by a fine tuning of parameters showing
that the exponential behaviour is not a necessity even if Λ(τ0) > 0.
Let us assume

a(τ) = ν(τ − q)γ (20)

with the initial condition a(τ0) = ν(τ0 − q)γ . Inserting we
determine the parameters

γ = 1, (21)

ν = σ
1
3 , (22)

(τ0 − q)2 =
2θ

ν
(23)



Then

Λ(τ0) =
3

2
(τ0 − q)−2. (24)

We obtain

Λ = 8πGẼ =
3

2
(τ − q)−2 (25)



Non-homogeneous metric:Fluctuation spectrum

〈δT
T

(n)
δT

T
(n′)〉 =

∞∑
l=0

(2l + 1)ClPl(nn′) (26)

n direction in the sky
Experimental result: COBE, WMAP

l(l + 1)Cl ' const (27)

ordinary Sachs-Wolfe effect



Einstein-Liouville-Vlasov equations

We decompose
gµν = hµν + hµν (28)

where hµν describes homogenous metric in the conformal time

ds2 = hµνdx
µdxν = a2(dt2 − dx2) (29)

and

ds2 = gµνdx
µdxν = a2

(
(1 + 2φ)dt2 − (1 + 2ψ)dx2 − γijdx idx j

)
(30)



We write the Liouville equation in the form

(pµ∂xµ − Γ
k
µνp

µpν∂k)Ω = δΓk
µνp

µpν∂kΩ (31)



For massless particles ( m = 0) and in the homogeneous metric
hµν = 0 the Jüttner distribution

ΩE = exp(−a2β|p|) (32)

with
p2 =

∑
j

pjpj

is the solution of Liouville eq.



Non-homogeneous metric

The solution can be expressed as

Ω = Ωg
E + βp0ΘΩg

E (33)

where
Ωg
E = exp(−βp0) (34)

and p0 is determined from gµνp
µpν = 0



Θ is the solution of the equation

∂tΘ + nk∂xkΘ = −2∂tψ − 1
2n

jnk∂tγjk (35)



We have
Ω = exp(− p0

T + δT
) (36)

where
δT

T
= Θ (37)

where

Θ(t, x) = Θ0(x− nt)−
∫ t

0

(
2∂sψ(s, x− (t − s)n)

+ 1
2∂sγjk(s, x− (t − s)n)njnk

)
ds

(38)

with the initial condition Θ0(x).



Diffusive temperature fluctuations

We write
Ω = ΩE (1 + χ) (39)

We consider the massless (ultrarelativistic) limit m = 0.

∂tχ+ nk∂xkχ− 2Hpk∂kχ− κ2p−140
Hχ+ κ2βa2pk∂kχ

= −a2β|p|(nk∂xk (φ+ ψ) + 2∂tψ
+ 1

2n
l∂lγjkn

jnk + ∂tγjkn
jnk)

(40)

where in the massless case the operator 4H can be expressed in
the form

40
H = pjpk∂j∂k + 3pk∂k , (41)



We look for solutions in the form

Ω = Ωg
E + βp0ΘΩg

E + ra2Ωg
E = (1 + ra2) exp(− p0

T + δT
) (42)

Inserting this formula in the diffusion equation we obtain equations
for the temperature fluctuation Θ and r

∂tΘ + nk∂xkΘ + κ2βa2Θ = −2∂tψ −
1

2
njnk∂tγjk (43)

∂tr + nk∂xk r = 3κ2Θ (44)

where
nk = pk |p|−1 (45)



The solution reads

Θt(x) = exp(−βκ2
∫ t

0 a2(s)ds)Θ0(x− tn)

−
∫ t

0 ds exp(−βκ2
∫ t
s a2(r)dr)(2∂sψ(s, x− (t − s)n)

+ 1
2∂sγjkn

jnk(s, x− (t − s)n)

(46)



Temperature fluctuations

We restrict ourselves to tensor perturbations

〈Θ(t,n)Θ(t,n′)〉 =

= 1
4 (2π)−3

∫ t
0 ds

∫ t
0 ds ′

∫
dqF (s, s ′, q) exp(−βκ2(

∫ t
s +

∫ t
s′)dra

2(r))
(2(n∆(q)n′)2 − (n∆(q)n)(n′∆(q)n′)) exp(−i(t − s)nq + i(t − s ′)n′q)

(47)



where

n∆(q)n′ = nn′ − q−2(qn)(qn′) ≡ ∆(nn′, en, en′) (48)

n∆(q)n = 1− q−2(qn)2 ≡ ∆(en) (49)

where we write q = qe and

F (s, s ′, q) = ∂s∂s′P(s, s ′,q) (50)

P is the expectation value of tensor perturbations.



If the power spectrum F is known then there remains to perform
the integrals over s and q in order to obtain

〈Θ(t,n)Θ(t,n′)〉 ==
∑∞

l=0(2l + 1)D̃l(t,nn′)Pl(nn′)
=
∑∞

l=0(2l + 1)Cl(t)Pl(nn′)
(51)

where Pl are the Legendre polynomials and D̃lPl still must be
expanded in Legendre polynomials if the coefficients Cl are to be
independent of the angles. We have

D̃l == 1
16π2

∫ t
0 ds

∫ t
0 ds ′

∫
dqF (s, s ′, q) exp(−βκ2(

∫ t
s +

∫ t
s′)dra

2(r))(
2∆(nn′,−i∂s , i∂s′)2 −∆(−i∂s)∆(i∂s′)

)
jl(q(t − s))jl(q(t − s ′))

(52)



Let us calculate only the first term (denoted Dl)

Dl = 1
8π2 (nn′)2

∫ t
0 ds ′

∫ t
0 ds exp(−βκ2(

∫ t
s +

∫ t
s′)dra

2(r))∫∞
0 dqq2F (s, s ′, q)jl(q(t − s))jl(q(t − s ′))

(53)

It gives the same behaviour at large l as Cl . We make a simplifying
assumption

F (s, s ′, q) = f (s, s ′)σ(q) (54)

We shall first estimate Dl for a large l . According to Limber
asymptotic formula for large l

Dl = 1
16π (nn′)2∫ t

0 ds(t − s)−2f (s, s) exp(−2βκ2
∫ t
s dra2(r))σ(

l+ 1
2

t−s )(1 + O(l−2)))

(55)



Then, assuming
σ(q) = Aq−3 (56)

we estimate the asymptotic behaviour

Dl = A(l + 1
2 )−3 1

16π (nn′)2
∫ t

0 ds(t − s)f (s, s) exp(−2βκ2
∫ t
s dra2(r))

(57)
We can obtain an exact result

Dl(t) = 1
8πA(nn′)2 1

2
√
π

(l−1)!

Γ(l+ 3
2

)

∫ t
0 ds

∫ s
0 ds ′( t−s

′

t−s )l

f (s, s ′) exp
(
− βκ2(

∫ t
s +

∫ t
s′)dra

2(r)
)
F (l ,−1

2 , l + 3
2 ,

(t−s′)2

(t−s)2 )

(58)
If the integral over s and s ′ is concentrated at s = s ′ ,e.g.,

f (s, s ′) = fdδ(s − sd)δ(s ′ − sd)



then we can set s = s ′ and using∫∞
0 dqq−2Jl+ 1

2
(γq)Jl+ 1

2
(γq) = γ

π
(l−1)!
(l+1)! (59)

we obtain

Dl(t) = Afd(nn′)2 1
8π (l(l + 1))−1 exp(−2βκ2(

∫ t
sd
dra2(r)) (60)



For a finite temperature the metric fluctuations have the form

F (s, s ′, q) = q(exp(βq)− 1)−1 exp(−i(s − s ′)q) (61)

Its low and high energy behaviour can be described by the power
spectrum

F (s, s ′, q) = Qqn−1 exp(−βq − i(s − s ′)q) (62)

n = 1 describes the behaviour of thermal correlation functions of
∂tγ for a small q and n = 2 for a large q. A power spectrum with
an arbitrary power n may result from a accelerated expansion
starting from a thermal state. The Limber formula leads to the
large l behaviour in the Planck case



Dl(t) = (l + 1
2 ) 1

16π (nn′)2
∫ t

0 ds(t − s)−3
(

exp(
β(l+ 1

2
)

t−s )− 1
)−1

exp(−βκ2
∫ t
s dra2(r))

(63)
For the power spectrum we have

Dl(t) = (l + 1
2 )n−1 1

16πQ(nn′)2
∫ t

0 ds(t − s)−1−n

exp
(
− β(l+ 1

2
)

t−s − βκ
2
∫ t
s dra2(r)

) (64)

The integral could be calculated by means of the saddle point
method. The saddle point is determined from the equation

− 1 + n

t − sc
+ β

l + 1
2

(t − sc)2
= βκ2a2(sc) (65)

The dependence of Dl on l is a function of the expansion scale a
and the dissipation rate κ2.



Graviton correlation functions:power spectrum

We expand solution of Einstein equations in an external
homogeneous metric in plane waves

γjk(t, x) = (2π)−
3
2

∫
dq|q|−

1
2 (a(λ,q)ejk(λ,q)γ(t,q, λ) exp(iqx)+cc)

(66)
where cc denotes the complex conjugation of the preceding term).
Quantizing the Fourier modes we obtain the vacuum correlation
functions of gravitons in the transverse-traceless gauge. So, in the
momentum space

〈γjn(t, k)γlr (t ′,q)〉 = δ(k+q)(2π)−3P(t, t ′,q)(∆jl∆rn+∆jr∆nl−∆jn∆lr )
(67)

where
∆jl = δjl − qjqlq

−2 (68)



and

P(t, t ′, q) =
∑
λ,k,j

ekj (λ,q)γ(t,q, λ)ekj (λ,q)γ(t ′,q, λ) (69)

P depends only on q = |q| because the modes γ(t, q, λ) depend
only on q. Taking the time derivatives of the metric

〈∂tγjn(t, k)∂t′γlr (t ′,q′)〉 = δ(k+q)(2π)−3F (t, t ′,q)(∆jl∆rn+∆jr∆nl−∆jn∆lr )
(70)



where
F (t, t ′,q) = ∂t∂t′P(t, t ′,q) (71)

The power spectrum is closely related to the energy εg of
gravitational waves [?]

εg =
a2

32πG

∫
dqF (t, t, q) (72)

We can understand the power spectrum appearing in temperature
fluctuations in a wider sense as the energy impulse coming from
gravitational waves and leading to the temperature fluctuations.
We could obtain such generalized F calculating the correlation
functions of γ in more general states than just the vacuum states.
In such a case the impulse described by F can be restricted in time.



We restrict ourselves to standard examples of known vacuum
correlation functions. First, for the de Sitter space in the metric
ds2 = t−2(dt2 − dx2))

PdS(t, t ′,q) = a(t)a(t ′)
1

2|q|

(
1+

i(t − t ′)

|q|tt ′
+(q2tt ′)−1

)
exp(−i(t−t ′)|q|)

(73)
We approximate for a small q

∂s∂s′PdS(s, s ′,q) ' 1

2
|q|−3(ss ′)−2 exp(−i(s − s ′)|q|) (74)

Next, correlation functions in Minkowski space at temperature β−1

have the form

Pβ(t, t ′,q) =
1

2|q|
(exp(β|q|)− 1)−1 exp(−i(t − t ′)|q|) (75)

We can make the approximation



∂s∂s′Pβ(s, s ′,q) =
1

2
|q| exp(−β|q|) exp(−i(s − s ′)|q|) (76)


