
Uniqueness of the Fock Quantization
in Cosmology with Signature Change 

Guillermo A. Mena Marugán
  IEM-CSIC  (with Laura Castelló Gomar)

 Spala 29  June 2014 



Ambiguities in QFTAmbiguities in QFT



 The quantization of a classical system is not univocally defined. Even in 
linear field theory, one finds infinitely many Fock quantizations. 

 For a Klein-Gordon scalar field in Minkowski spacetime, there exists 
esentially only ONE quantization with Poincaré invariant vacuum.

 For STATIONARY spacetimes, one can select one quantization with 
certain requirements on the energy.

 For more general cases, one loses symmetry. Recently, UNIQUENESS 
has been reached in some nonstationary scenarios by appealing to the 
unitarity of the dynamics, rather than to invariance. 

Ambiguities in QFTAmbiguities in QFT



1) INVARIANCE under the spatial symmetries of the field equations. 

2) UNITARY implementability of the DYNAMICS in a finite time interval.

Klein-Gordon field in ultrastatic spactime with time-dependent mass: 

Our criteria select a a UNIQUE Fock representation for the CCR's, for any 
(smooth) mass function. 

The uniqueness result is valid for any spatial topology, and at least in any spatial 
dimension no larger than three. 

Uniqueness criteria for the Fock descriptionUniqueness criteria for the Fock description

̈−m2t =0.
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SPATIAL SYMMETRY INVARIANCE and UNITARY DYNAMICS

There is a natural ambiguity in the separation of the background from the field.
In cosmology, this introduces time-dependent canonical field transformations.

 Remarkably, our criteria select also a UNIQUE canonical pair for the field.

Uniqueness criteria for the Fock descriptionUniqueness criteria for the Fock description
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Motivation Motivation 

 In this way, we would cover 
more general situations, 
obtaining robust quantizations. 

 In particular, we would like to 
study situations with “signature 
change”. 

 We want to generalize the class of field 
equations for which we can apply our 
UNIQUENESS results.

 This would allow us to extend the range 
of applicability of our criteria. 

 Signature change has been 
repeatedly studied in Quantum 
Cosmology: think e.g.  of the 
tunneling from nothing  or the 
no-boundary proposals.

 This kind of scenarios have 
received a lot of attention in 
LQC recently. 



MotivationMotivation

 Can we deal with field equations that 
involve processes of signature change? 

 What is the spacetime interpretation 
when these processes are present?

 Can we set initial 
conditions in scenarios 
with signature change?

 Can this be made 
compatible with the 
uniqueness criteria? 



Fock quantization with unitary dynamicsFock quantization with unitary dynamics

  Klein-Gordon real scalar field in ultrastatic spacetime Klein-Gordon real scalar field in ultrastatic spacetime              with 
any time interval and       compact:

 The mass has a second derivative, integrable in all compact subintervals.

       : Canonical field momentum, equal to the densitized time derivative. 

            : Modes of the Laplace-Beltrami operator, with eigenvalue
            :  degeneration index.                        : degeneration number.

   We expand the field in modes:

I x M , I
M

̈−m2t =0.

P

{ nl} −n
2 .

l gn

x ,t =∑ qnl t  nl x .



Fock quantization with unitary dynamicsFock quantization with unitary dynamics

  The modes decouple dynamically:  

The dynamics is insensitive to the degeneration.
 
 We choose the Fock representation selected by the complex structure 
       which is naturally associated to the massless case: 

         is invariant under the spatial symmetries.  

        

q̈nl+[ωn2+m2(t)]qnl=0 ,

anl=
1

√2ωn
(ωnqnl+i pnl ) .

J 0

pnl=q̇nl .

J 0



Fock quantization with unitary dynamicsFock quantization with unitary dynamics

  The evolution is a Bogoliubov transformation. An asymptotic analysis, 
proves that the beta coefficients, independent of the degeneration, are 
of order

 The dynamics is unitarily implementable iff

  Asymptotically, the degeneration is of order 

  Therefore, the evolution is implementable as a unitary transformation in 
three or less spatial dimensions 

 With similar techniques one can prove the uniqueness of the 
representation--up to unitary transformations that respect the symmetry 
invariance-- as well as of the field description.

n=O n
−2  .

∑n
gn∣nt , t0∣

2∞ .

gn=O n
d−1 .

d .



Fock quantization with unitary dynamicsFock quantization with unitary dynamics

 The production of particles is finite.



ExtensionsExtensions

 Time-dependent scalings of the field:    = f t  .

 We have considered finite 
dynamical transformations.

 Unitary implementability is valid 
for any time reparametrization:

U (t , t0)

Ũ (T ,T 0)=U [t (T ) , t (T 0)=t0 ] .
t T 

t ' (T )≠0 ,∞ .



Generalizations of the field equationGeneralizations of the field equation



 Allowing for time-dependent scalings and time reparametrizations: 

Up to time reversal, there is a bijective correspondence:

Generalizations of the field equationGeneralizations of the field equation

 ' '−m2T =0 .

ϕ̈+c (t) ϕ̇+d (t)Δϕ+m̃2(t)ϕ=0 ,

ϕ= f (t)φ dT=g (t )dt , g (t )≠0,

g (t )=s√d (t ) , s=±.

f (t)=[d (t)]−1/4 exp (− 1
2∫

t
c).



 We cover all the field equations of generalized Klein-Gordon type 
with time-dependent coefficients and spatial dependence contained 
only in the Laplace-Beltrami operator.

We find obstructions only IF  the Laplace-Beltrami coefficient     
vanishes, and problems if it becomes negative.

•This result allows us to extend the applicability of our criteria for the 
uniqueness in the choice of a Fock description. 

Generalizations of the field equationGeneralizations of the field equation

ϕ̈+c (t ) ϕ̇+d (t)Δϕ+m̃2(t )ϕ=0.

d t 



The relation between the masses of the two descriptions is:

The mass          explodes if         vanishes. 

  This mass satisfies the conditions for our uniqueness results, e.g.,  if 
        does and    and    have a third and a fourth derivative, respectively, 
 integrable in compact intervals.

Generalizations of the field equationGeneralizations of the field equation

m2 [T (t )]= m̃
2(t)
d (t)

−
d̈ (t)

4d2(t)
+

5[ ḋ (t )]2

16d3(t)
−
ċ (t)

2d(t)
−
c2(t)
4d (t)

.

d t mt 

mt  c d
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Spacetime interpretationSpacetime interpretation

Let us consider conformally ultrastatic spacetimes with metric:

The considered field equations are the corresponding Klein-Gordon 
equations (of mass     ) under the bijective correspondence:  

Here, 

ds2=−N 2(t)dt2+a2(t )hij( x)dx
idx j .

a4(t )=d (t )exp [∫t 2c( t̃ )d t̃ ] ,
N 4(t)=d 3(t)exp [∫t 2c( t̃ )d t̃ ] ,
ϕ̈+c(t)ϕ̇+d (t )Δϕ+m̃2(t )ϕ=0 .

m̄

m2=N 2 m2 .



Spacetime interpretationSpacetime interpretation

 With this spacetime interpretation, the right scaling of the field is

If          approaches zero: 

 The scale factor and the lapse tend to zero.

 Since                      the mass tends to zero as well.  

 The lapse function approaches zero faster than the scale factor.

a4(t )=d (t )exp [∫t 2c( t̃ )d t̃ ] , N 4(t)=d 3(t)exp [∫t 2c( t̃ )d t̃ ] ,

ϕ∝ φ
a (t ) .

m2=N 2 m2 ,

d (t )



Spacetime interpretationSpacetime interpretation

The spacetime metric adopts the form:  

(     is a constant)

     

It degenerates completely when          vanishes.

 From this perspective, vanishing          is more than a signature change.
 It involves a singularity where the scalar curvature explodes as    

 If we set                    the metric becomes Euclidean in the region where 
          becomes negative.           

ds2=[−d (t)dt2+hij( x)dxidx j ]D √∣d (t)∣exp∫td
t
c .

D

d t 

d t 
d−7 /2.

d t d =0 ,
d t 



Spacetime interpretation: LQGSpacetime interpretation: LQG

 For these geometries, the 
Ashtekar-Barbero variables 
 behave as:

They become ill defined in 
the process of signature 
change.  

E∼a2∼√∣d∣→0 ,
A∼K∼d−9/4→∞ .
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Vacuum dynamics with signature changeVacuum dynamics with signature change

 Can we fix initial conditions for the vacuum in the elliptic regime and 
obtain a meaningful vacuum in the conventional region?

 The field equation is well defined for                 and the choice of lapse

                          (for Lorentzian and Euclidean sectors).

 Our uniqueness criteria for     provide, under scaling and change of  
time, a unique choice of positive and negative frequencies for 

ϕ̈=−ε [a4Δ+a6m2 ]ϕ .

ϕ∝
φ
a

N 2=εa6 , ε=±1


 .

{φn±(T )Ψnl ( x⃗)} {ϕn±(τ)Ψnl ( x⃗)}.
[dT 2=εa4d τ2=d (t )dt2]



Vacuum dynamics with signature changeVacuum dynamics with signature change

 Assume that we can make a Wick rotation: 
analytic continuation of the solutions.

 In the Euclidean region, solutions are linear 
combinations of them, with coefficients      .

 When            vanishes (at          ), we impose as matching conditions
 the continuity of the field      and its time derivative

 For             the field is a linear combination of the Lorentzian modes,
 with coefficients  

ϕn
±(E )(τ)=lim τ̃→ i τ ϕn

±( τ̃).

cnl
±(E )

=0d 
ϕ ∂τϕ .

cnl
± .

0 ,



Vacuum dynamics with signature changeVacuum dynamics with signature change

 The matching conditions imply:

 Using that the modes are orthonormal with the Klein-Gordon product 
 and the definition                   

( ϕn+(E)(0) ϕn
−(E )(0)

∂τϕ
+(E )

n(0) ∂τϕ
−(E)

n(0))(cnl
+(E)

cnl
−(E))=( ϕn+ (0) ϕn

− (0)
∂τϕ

+
n(0) ∂τϕ

−
n(0))(cnl

+

cnl
− ) .

I n
(rs)=lim τ→ 0 〈ϕn

r (E)(−∣τ∣) ,ϕm
s (∣τ∣)〉 ,

(cnl+cnl− )=(−I n
(+−) −I n

(−− )

I n
(++ ) I n

(−+) )(cnl+(E)cnl
−(E)) .



Vacuum dynamics with signature changeVacuum dynamics with signature change

 Starting only with “positive frequency” 
contributions in the Euclidean sector,
 so that                   we  obtain: 

 In the Lorentzian region we have     
positive and negative frequencies. 

There is particle creation.

cnl
−(E )=0 ,

cnl
+=−I n

(+− ) , cnl
−=I n

(++ ).



Vacuum dynamics with signature changeVacuum dynamics with signature change

If we employ a WKB approximation for the computation (with due care  
to handle some subtleties), we obtain:

The corresponding particle production depends on the background  only 
through       and the production is exponential. 

cnl
−=I n

(++ )=− 1+i
2

exp (ωnΛ ) , Λ = ∫0

∣τ0∣ ā2( τ̃) d τ̃ ,

ā2(−τ)=lim τ̃ → i τ a
2( τ̃).



The criteria of spatial symmetry and unitary dynamics select a unique 
Fock representation and a canonical pair. 

 With time reparametrizations  and field scalings, the results can be 
extended to Klein-Gordon equations with time-dependent coefficients.

These field equations are the Klein-Gordon equations of fields in 
conformally ultrastatic spacetimes, in a bijective correspondence.

In a process of signature change, the metric degenerates  completely 
and the Ashtekar-Barbero connection is ill defined.

 Assuming a Wick rotation, we can set initial conditions in the Euclidean 
region. The evolution generally leads to a particle production.

ConclusionsConclusions


	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30

