Invariant Solutions of the Wheeler-DeWitt equation in Hybrid Gravity

Aneta Wojnar

in collaboration with A.Borowiec, S.Capozziello, M. De Laurentis, F.Lobo, A.Paliathanasis, M. Paolella

University of Wrocław
The 1st Conference of Polish Society on Relativity

Spała, June 2014

Field equations

The action of the hybrid metric-Palatini gravity is

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} [R + f(\mathcal{R})] + S_m, \tag{1}$$

where R is a metric Ricci curvature scalar and $f(\mathcal{R})$ is a function of the Palatini curvature scalar which is constructed by an independent torsionless connection $\hat{\Gamma}$. Here $\mathcal{R}=g^{\mu\nu}\mathcal{R}_{\mu\nu}(\hat{\Gamma})$.

The modified field equations are

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + f'(\mathcal{R})\mathcal{R}_{\mu\nu} - \frac{1}{2}f(\mathcal{R})g_{\mu\nu} = \kappa^2 T_{\mu\nu},$$
 (2)

The trace of (2) is called the hybrid structural equation. The Palatini curvature \mathcal{R} can be expressed algebraically in terms of X, assuming that $f(\mathcal{R})$ has analytic solutions:

$$f'(\mathcal{R})\mathcal{R} - 2f(\mathcal{R}) = \kappa^2 T + R \equiv X.$$
 (3)

Field equations

The action (1) is equivalent to the following one with the scalar field

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} [R + \phi \mathcal{R} - V(\phi)]. \tag{4}$$

where $\phi \equiv f'(\mathcal{R})$ and $V(\phi) = \mathcal{R}f'(\mathcal{R}) - f(\mathcal{R})$. Furthermore, for the two tensors $R_{\mu\nu}$ and $\mathcal{R}_{\mu\nu}$ it holds that¹

$$\mathcal{R}_{\mu\nu} = R_{\mu\nu} + \frac{3}{2} \frac{f(\mathcal{R})_{,\mu} f(\mathcal{R})_{,\nu}}{f^2(\mathcal{R})} - \frac{f(\mathcal{R})_{;\mu\nu}}{f(\mathcal{R})} - \frac{1}{2} \frac{\Box f(\mathcal{R})}{f(\mathcal{R})} g_{\mu\nu}$$

¹S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J Olmo, JCAP 04 (2013) 011 (arXiv:1209.2895)

Field equations

By using the last relation the action (4) becomes

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} [(1+\phi)R + \frac{3}{2\phi} \partial^{\mu}\phi \partial_{\mu}\phi - V(\phi)]$$
 (5)

which is the action of a non minimally coupled scalar field. For the FRW spatially flat spacetime and for empty space ($T_{\mu\nu}=0$) the Lagrangian of the field equations is

$$\mathcal{L} = 6a\dot{a}^2(1+\phi) + 6a^2\dot{a}\dot{\phi} + \frac{3}{2\phi}a^3\dot{\phi}^2 + a^3V(\phi). \tag{6}$$

where the field equations are the Hamiltonian of (6) and the Euler-Lagrange equations with respect to the variables $x^i=(a,\phi)$. The WDW equation which is a quantization of the Hamiltonian has a form $\Delta \Psi - a^3 V(\phi) \Psi = 0$, where Δ is the Laplace operator.

Point Symmetries

Let $H\left(x^{i},u,u_{,i},u_{,ij}\right)=0$ be a PDE while $X=\xi^{i}\left(x^{j},u\right)\partial_{i}+\eta\left(x^{j},u\right)\partial_{u}$ is the generator of an infinitesimal transformation in the space $\left\{x^{i},u\right\}$. We shall say that X is a Lie point symmetry of H if there exists a function λ , such that $X^{[2]}H=\lambda H$, modH=0 where $X^{[2]}$ is the second prologation of X.

In order to select potentials $V\left(\phi\right)$ where the WDW eq. admits Lie point symmetries we will follow the geometric approach of A. Paliathanasis, M. Tsamparlis, IJGMMP (2014) 14500376, (arXiv:1312.3942) where Lie point symmetries are related to the conformal algebra of a minisuperspace.

Results

ullet If $V\left(\phi
ight)=V_{0}\left(\sqrt{\phi}+V_{1}
ight)^{4}$, the generic symmetry vector is

$$X_{\Psi}=-rac{1}{2}\partial_a+rac{\phi+V_1\sqrt{\phi}}{a}\partial_\phi+c_2\Psi\partial_\Psi$$
 $f(\mathcal{R})=rac{\mathcal{R}^2}{4V_0} \ \ ext{for} \ \ V_1=0.$

• If $V\left(\phi\right) = V_0 \left(1+\phi\right)^2 \exp\left(\frac{6}{V_1}\arctan\sqrt{\phi}\right)$, the generic symmetric vectors are $X_1 = \partial_u$, $X_{\Psi} = \Psi \partial_{\Psi}$ $X_2 = e^{-\frac{3\nu}{V_1}} \left[\cos\left(V_C u\right)\cos\left(3 v\right) + \sin\left(V_C u\right)\sin\left(3 v\right)\right] \partial_u + e^{-\frac{3\nu}{V_1}} \left[\begin{array}{c} \left(V_1\cos\left(3 v\right) - \sin\left(3 v\right)\right)\cos\left(V_C u\right) + \\ + \left(\cos\left(3 v\right) + V_1\sin\left(3 v\right)\right)\sin\left(V_C u\right) \end{array} \right] \partial_v$ $X_3 = e^{-\frac{3\nu}{V_1}} \left[\cos\left(V_C u\right)\sin\left(3 v\right) + \sin\left(V_C u\right)\cos\left(3 v\right)\right] \partial_u + e^{-\frac{3\nu}{V_1}} \left[\begin{array}{c} \left(\cos\left(3 v\right) + V_1\sin\left(3 v\right)\right)\cos\left(V_C u\right) + \\ + \left(\sin\left(3 v\right) - V_1\cos\left(3 v\right)\right)\sin\left(V_C\right) \end{array} \right] \partial_v$

Power law potential

Invariant solution

For the power law potential $V_0\left(\sqrt{\phi}+V_1\right)^4$ there exist a coordinate system $(a,\phi) \to (x,y)$ where the WDW becomes

$$\Psi_{,xx} + \Psi_{,yy} - 2V_0y^4\Psi = 0.$$

Thus by applying the zero order invariants of X_{Ψ} , $\{y, Ye^{\mu x}\}$ we can find the invariant solution

$$\Psi(x,y) = \sum_{\mu} \left[y_1 e^{\mu x + w(y)} + y_2 e^{\mu x - w(y)} \right]$$
 (7)

where $w\left(y\right)=\frac{\sqrt{2}}{2}\int\sqrt{(2ar{V}_{0}y^{4}-\mu^{2})}dy$.

Power law potential $V\left(\phi ight)=V_{0}\left(\sqrt{\phi}+V_{1} ight)^{4}$

Lie point symmetries of the WDW eq. can be used in order to construct Noether point symmetries for a Lagrangian of field equations (see arXiv:1312.3942). We have the following results.

- If $V_1=0$, then $a\left(t\right)=a_0\sqrt{t}$, i.e. the radiation solution
- If $V_1 \neq 0$, then $a(\tau) = a_0(\tau \tau_0) + a_1 a_2 \frac{1}{\tau \tau_0}$, where $dt = a(\tau) d\tau$. However, if $a_0 = 0$ the Friedmann eq. H^2 can be written

$$\frac{H^2}{H_0^2} = \Omega_{0,r} a^{-4} + \Omega_{0,m} a^{-3} + \Omega_{0,k} a^{-2} + \Omega_{0,f} a^{-1} + \Omega_{0,\Lambda}$$

where
$$\Omega_{0,i}=\Omega_{0,i}\left(a_1
ight)$$
, $i=\left\{r,\mathit{m},\mathit{k},\mathit{f},\Lambda\right\}$ and $a_2=\frac{(|a_1|+1)^2}{H_0}$.

Similarly, we can find an exact classical solution for the second potential.

Classical solution

Conclusion

- The Lie point symmetries of the WDW eq. in Hybrid Gravity were studied.
- The Lie invariants were used in order to find exact solution of the WDW and to solve analytically the modified field equations.
- It is of interest that in the case of the power law potential $V\left(\phi\right)=V_0\left(\sqrt{\phi}+V_1\right)^4$ the Friedmann equation H^2 is a fourth order polynomial with non vanishing coefficients; that is, every power law term of $\sqrt{\phi}$ in the potential produces a corresponding fluid in the model.

$$\frac{H^2}{H_0^2} = \Omega_{0,r}a^{-4} + \Omega_{0,m}a^{-3} + \Omega_{0,k}a^{-2} + \Omega_{0,f}a^{-1} + \Omega_{0,\Lambda}$$

Thank you!