Gravitational turbulent instability of AdS₅

Andrzej Rostworowski

Uniwersytet Jagielloński (Kraków)

joint work with Piotr Bizoń

PoToR@Spała, 1st July 2014

Anti-de Sitter spacetime in d+1 dimensions

Manifold $\mathscr{M} = \{t \in \mathbb{R}, x \in [0, \pi/2), \omega \in S^{d-1}\}$ with metric

$$g = \frac{\ell^2}{\cos^2 x} \left(-dt^2 + dx^2 + \sin^2 x \, d\omega_{S^{d-1}}^2 \right)$$

Spatial infinity $x = \pi/2$ is the timelike cylinder $\mathscr{I} = \mathbb{R} \times S^{d-1}$ with the boundary metric $ds_{\mathscr{I}}^2 = -dt^2 + d\Omega_{S^{d-1}}^2$

- Null geodesics get to infinity in finite time
- AdS is **not globally hyperbolic** to make sense of evolution one has to prescribe boundary conditions at *I*
- Asymptotically AdS spacetimes by definition have the same conformal boundary as AdS

Is AdS stable?

- By the positive energy theorem AdS space is the ground state among asymptotically AdS spacetimes (much as Minkowski space is the ground state among asymptotically flat spacetimes)
- Minkowski spacetime was proved to be asymptotically stable by Christodoulou and Klainerman (1993)
- Key difference between Minkowski and AdS: the mechanism of stability of Minkowski **dissipation of energy by dispersion** is absent in AdS (for no-flux boundary conditions *I* acts as a mirror)
- The problem of stability of AdS has not been explored until recently; notable exceptions: proof of local well-posedness by Friedrich (1995), proof of rigidity of AdS (Anderson 2006)
- The problem seems tractable only in spherical symmetry so one needs to add matter to generate dynamics. Simple choice: a massless scalar field

AdS gravity with a spherically symmetric scalar field

Conjecture (Bizoń-R 2011)

 AdS_{d+1} (for $d \ge 3$) is unstable against black hole formation under arbitrarily small scalar perturbations

Heuristic picture (supported by the nonlinear perturbation analysis and numerical evidence): due to resonant interactions between harmonics **the energy is transferred from low to high frequencies**.

The concentration of energy on finer and finer scales eventully leads to the formation of a horizon (**strongly turbulent instability**).

- The turbulent instability is absent for some perturbations, in particular there is good evidence for the existence of stable time-periodic solutions (Maliborski-R 2013)
- In 2+1 dimensions there is a mass gap between AdS₃ and the lightest BTZ black hole. Small perturbations of AdS₃ remain smooth for all times but their radius of analyticity shrinks to zero as t → ∞ (weakly turbulent instability) (Bizoń-Jałmużna 2013)

Other models

- Due to the computational limitations the numerical analysis of stability of AdS so far has been restricted to the 1+1 dimensional setting (spherical symmetry).
- Which features of spherical collapse in the Einstein-scalar-AdS system are model-dependent and which ones hold in general?
- Other matter models: scalar field with $m^2 < 0$, Yang-Mills (allows for different boundary conditions and admits many static solutions)
- The vacuum case seems most interesting. The analysis of weak perturbations of AdS is very similar to the scalar field case (Dias-Horowitz-Santos 2012), however *long-time* numerical simulations without a symmetry reduction appear challenging
- A partial way around: one can evade Birkhoff's theorem in five and higher odd spacetime dimensions

How to bypass Birkhoff in five dimensions

- Odd-dimensional spheres admit non-round homogeneous metrics
- Homogeneous metric on S³

$$g_{S^3} = e^{2B}\sigma_1^2 + e^{2C}\sigma_2^2 + e^{2D}\sigma_3^2,$$

where σ_k are left-invariant one-forms on SU(2)

$$\sigma_1 + i\sigma_2 = e^{i\psi}(\cos\theta \, d\phi + id\theta), \quad \sigma_3 = d\psi - \sin\theta \, d\phi.$$

- B = C = D: round metric with SO(4) symmetry
- ▶ $B \neq C \neq D$: anisotropic metric with SU(2) symmetry (squashed S^3)
- (Bizoń-Chmaj-Schmidt 2005): use g_{S³} as an angular part of the five dimensional metric (cohomogeneity-two triaxial Bianchi IX ansatz)

$$ds^{2} = -Ae^{-2\delta}dt^{2} + A^{-1}dr^{2} + \frac{1}{4}r^{2}\left(e^{2B}\sigma_{1}^{2} + e^{2C}\sigma_{2}^{2} + e^{-2(B+C)}\sigma_{3}^{2}\right)$$

where A, δ, B, C are functions of (t, r). The biaxial case: B = C.

Cohomogeneity-two biaxial Bianchi IX ansatz in AdS

$$ds^{2} = \frac{\ell^{2}}{\cos^{2}x} \left(-Ae^{-2\delta}dt^{2} + A^{-1}dx^{2} + \frac{1}{4}\sin^{2}x \left(e^{2B}(\sigma_{1}^{2} + \sigma_{2}^{2}) + e^{-4B}\sigma_{3}^{2} \right) \right),$$

where *A*, δ , *B* are functions of (t,x). Inserting this ansatz into the vacuum Einstein equations with $\Lambda = -6/\ell^2$ we get a hyperbolic-elliptic system

$$(A^{-1}e^{\delta}\dot{B})^{\cdot} = \frac{1}{\tan^{3}x} \left(\tan^{3}xAe^{-\delta}B' \right)' - \frac{4e^{-\delta}}{3\sin^{2}x} \left(e^{-2B} - e^{-8B} \right),$$

$$\delta' = -2\sin x \cos x \left(B'^{2} + A^{-2}e^{2\delta}\dot{B}^{2} \right),$$

$$A' = 4\tan x \left(1 - A \right) + A\delta' + \frac{2(4e^{-2B} - e^{-8B} - 3A)}{3\tan x}.$$

- We solve this system for smooth initial data B(0,x), $\dot{B}(0,x)$ with finite mass $M = \lim_{x \to \pi/2} \sin^2 x \sec^2 x (1-A)$
- Asymptotic behavior near infinity ($x = \pi/2$) $B(t,x) \sim b_{\infty}(t)(\pi/2-x)^4$, $\delta(t,x) \sim \delta_{\infty}(t)$, $1-A(t,x) \sim M(\pi/2-x)^4$

Spectral properties

Linearized equation:

$$\ddot{B} + LB = 0, \quad L = -\frac{1}{\tan^3 x} \partial_x \left(\tan^3 x \partial_x \right) + \frac{8}{\sin^2 x}$$

The operator *L* is essentially self-adjoint on $L^2([0, \pi/2), \tan^3 x dx)$.

- The eigenvalues and eigenfunctions of *L* are (k = 0, 1, ...) $\omega_k^2 = (6+2k)^2$, $e_k(x) = d_k \sin^2 x \cos^4 x_2 F_1(-k, 6+k, 4; \sin^2 x)$, where d_k is the normalization factor ensuring that $(e_j, e_k) = \delta_{jk}$; waves are **nondispersive**: $d\omega_k/dk = \pm 2$.
- Using the generalized Fourier series $B(t,x) = \sum_k b_j(t)e_k(x)$ we express the linearized energy as the Parseval sum

$$E = \int_0^{\pi/2} \left(\dot{B}^2 + B'^2 + \frac{8}{\sin^2 x} B^2 \right) \tan^3 x \, dx = \sum_k E_k \, ,$$

where $E_k = \dot{b}_k^2 + \omega_k^2 b_k^2$ is the energy of the *k*-th mode.

Blowup of the Kretschmann scalar

$$R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}(t,0) = 40 + 864B''(t,0)^2$$

Key evidence for instability

Conjecture

AdS₅ is unstable against black hole formation under arbitrarily small gravitational perturbations

Spectrum of energy

Universal power–law exponent $\alpha \approx -1.67$ (-5/3?)

Conclusions

- Dynamics of asymptotically AdS spacetimes is an interesting meeting point of basic problems in general relativity, PDE theory, AdS/CFT, and theory of turbulence. Understanding of these connections is at its infancy.
- Some open problems:
 - Turbulent instability is absent for some initial data. How big are these stability islands on the turbulent ocean?
 - Is the fully resonant linear spectrum necessary for the turbulent instability? (Dias, Horowitz, Marolf, Santos 2012, Maliborski-R 2014).
 - Energy cascade has the power-law spectrum E_k ~ k^α with a universal exponent α. What determines α?
 - What happens outside spherical symmetry? It is not clear if the natural candidate for the endstate of instability - Kerr-AdS black hole - is stable itself (Holzegel-Smulevici 2013)
 - What are the implications of all that for the AdS/CFT?

Two kinds of stability

• Consider a nonlinear evolution equation $\frac{du}{dt} = A(u)$ and its equilibrium solution ϕ (that is $A(\phi) = 0$). Let $u = \phi + w$. The equilibrium ϕ is (nonlinearly) **stable** if

 $\|w(0)\|_1$ is small $\Rightarrow \|w(t)\|_2$ is small for all t > 0

• Consider the linear equation $\frac{dv}{dt} = Lv$, where $L = A'(\phi)$. The equilibrium ϕ is **linearly stable** if

 $\|v(0)\|_1$ is small $\Rightarrow \|v(t)\|_2$ is small for all t > 0

- Key idea of linearization: as long as w(t) remains small, the nonlinear part in A(u) = Lw + N(w) is negligible.
- Linear stability does not imply stability!
- The equilibrium φ is unstable/linearly unstable if it is not stable/linearly stable.
- In case of instability there arises a question: what happens as $t \rightarrow \infty$?