GRAVITY INDUCED BY NC SPACETIME

Shahn Majid (QMUL); joint w. Edwin Beggs

Class. Quant. Gravity 31 (2014) 035020 (39pp)

Classical geometry Quantum Gravity?!?

We are going to study this quantum spacetime

$$[r,t] = i\lambda_P r$$

- find a unique quantum metric (one scale parameter)
- a gravitational source so strong that even light cannot escape
- a Ricci curvature singularity at r=0 even in the commutative limit $\lambda_P \to 0$
- a fully solved example of a 2D noncommutative Riemannian geometry; some purely noncommutative phenomena

BACKGROUND TO THE ALGEBRA

 $m: [x_i, t] = i\lambda_P x_i$

Born reciprocity

SM & H. Ruegg PLB 334 (1994)

	Position	Momentum
Gravity	Curved	Noncommutative
Cogravity	Noncommutative	Curved
Quantum Gravity	Both	Both

SM Lect Notes Phys. 447 (1995)

SM Lect Notes Phys. 451 (2000)

Quantum spacetime hypothesis

Curved momentum space hypothesis

 $C(M) \bowtie U(so_{3,1})$ acting on U(m) semidual'n $U(so_{3,1} \bowtie m)$ acting on C(M) $C(SU_2) \bowtie U(su_2)$ acting on $U(su_2)$ $U(su_2 \oplus su_2)$ acting on $C(SU_2)$

 $U(su_2 \oplus su_2)$ acting on $C(SU_2)$

bicrossproduct quantum group

factorising (quantum) group

See this in 3D QG

SM & B. Schroers J. Phys A 42 (2009) 425402

II BACKGROUND TO THE PHYSICS: WAVE OPERATORS

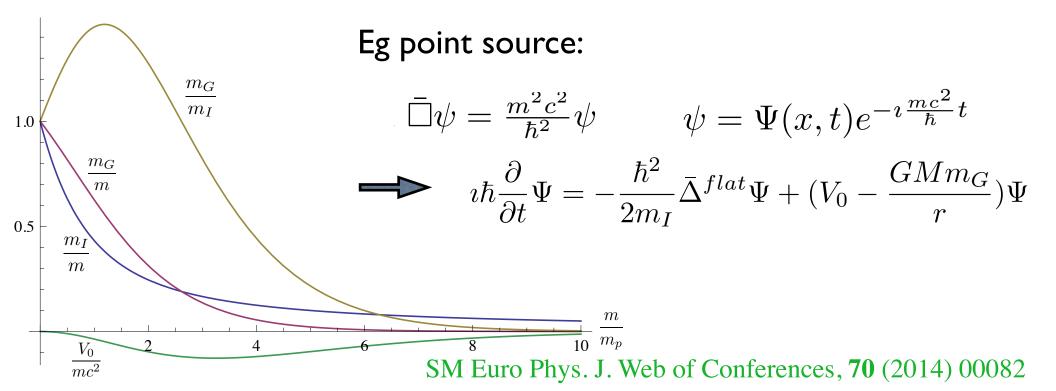
$$[p^{i}, N_{j}] = -\frac{i}{2} \delta_{j}^{i} \left(\frac{1 - e^{-2\lambda p^{0}}}{\lambda} + \lambda \vec{p}^{2} \right) + i \lambda p^{i} p_{j},$$

$$||p||_{\lambda}^{2} = \vec{p}^{2} e^{-\lambda p^{0}} - \frac{2}{\lambda^{2}} (\cosh(\lambda p^{0}) - 1)$$

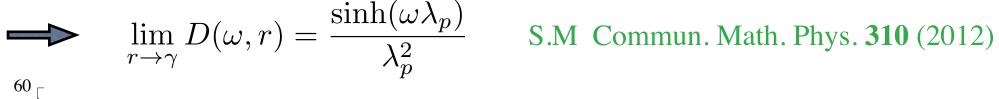
Wave operator on nc plane waves $e^{i\vec{x}\cdot\vec{p}}e^{itp_0}$ \Longrightarrow $|\frac{\partial p^0}{\partial p^i}|=e^{-\lambda p^0}$

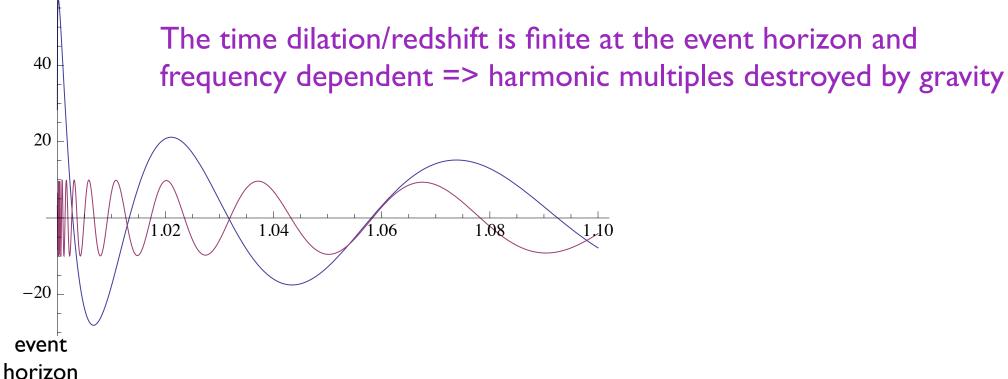
G.Amelino-Camelia & S. M, Int. J. Mod. Phys. A 15 (2000)

Freedom in extended differential structure = newtonian gravity



BH potential + minimal coupling => quantum Schw. black hole wave operator





Thm (M, \bar{g}) Riemannian, τ conformal killing, β a function => \exists noncommutative $M \times \mathbb{R}$ relations: $[f, t] = \lambda \tau(f)$ with extended calc s.t \Box quantises static spacetime $\beta^{-1} \mathrm{d}t \otimes \mathrm{d}t + \bar{g}$

ULANTUM DIFFERENTIALS ON AN ALGEBRA

space of 1-forms, i.e. `differentials dx'

$$\Omega^{1}$$

$$d: A \to \Omega^{1}$$

$$\{\sum adb\} = \Omega^{1}$$

$$a((db)c)=(a(db))c$$

$$d(ab)=(da)b+a(db)$$

`Leibniz rule'

`surjectivity'

require this to extend to a DGA

$$\Omega = T_A \Omega^1 / \mathcal{I} = \bigoplus_n \Omega^n, \quad d^2 = 0$$

$$d^2 = 0$$

graded Leibniz rule

Prop.

bicovariant surjective
$$O^{1}(T(x))$$

$$\Omega^1(U(\mathfrak{g})) \longleftrightarrow \zeta \in Z^1(\mathfrak{g}, \Lambda^1)$$

$$\mathrm{d}x = 1 \otimes \zeta(x), \ \Omega^1 = U(\mathfrak{g}) \otimes \Lambda^1$$

e.g.
$$\circ: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g} \quad [x,y] = x \circ y - y \circ x$$

$$(x \circ y) \circ z - (y \circ x) \circ z = x \circ (y \circ z) - y \circ (x \circ z)$$

$$\Lambda^1 \cong \mathfrak{g}$$
 $x.\zeta(y) = \zeta(x \circ y)$

$$\Rightarrow \Omega(U(\mathfrak{g}))$$

SM+W.Tao

$$\mathfrak{g}: [r,t] = \lambda r$$

canonical calculus (unique *-preserving 2D)

$$A = U(\mathfrak{g})$$

$$\Omega^1 = A \mathrm{d}r \oplus A \mathrm{d}t$$

$$\Lambda^1 = \mathfrak{g} \qquad \zeta \text{ exact}$$

$$[r, dt] = \lambda dr, \quad [t, dt] = \lambda dt$$

$$\implies$$
 $df(r,t) = \frac{\partial f}{\partial r} dr + (\partial_0 f) dt, \quad \partial_0 f = \frac{f(r,t) - f(r,t-\lambda)}{\lambda}$

$$\Box = \partial_0^2 - (\frac{\partial}{\partial x})^2 - \blacksquare$$

$\Box = \partial_0^2 - (\frac{\partial}{\partial x})^2 \quad \longrightarrow \quad \text{Variable speed of light prediction}$

Note

$$[f(r), t] = \lambda r \frac{\partial f}{\partial r} \qquad [r, f(t)] = \lambda r \partial_0 f \qquad \Longrightarrow \qquad Z(A) = \mathbb{C}1$$

$$[r, f(t)] = \lambda r \partial_0 f$$

$$Z(A) = \mathbb{C}1$$

$$[f, dr] = 0, \quad [f, dt] = \lambda df$$
 \longrightarrow $dr, \quad v = r dt - t dr$

central

QUANTUM METRIC TENSOR

$$g \in \Omega^1 \underset{A}{\otimes} \Omega^1$$

$$\wedge(g) = 0$$

 $\wedge(g) = 0$ `quantum symmetric'

invertible in the sense exists inverse: $(\ ,\):\Omega^1\mathop{\otimes}_{{}_{\!\!A}}\Omega^1\to A$

$$((\ ,\)\otimes \mathrm{id})(\omega\otimes g)=\omega=(\mathrm{id}\otimes(\ ,\))(g\otimes\omega),\quad\forall\omega\in\Omega^1$$

$$a(\omega, \eta) = (a\omega, \eta), \quad (\omega, \eta)a = (\omega, \eta a)$$

`bimodule map (tensorial)'

need this to be able to contract/ `raise/lower' via metric, eg to have well defined contraction:

$$(\ ,\)\otimes \mathrm{id}:\ \Omega^1\underset{A}{\otimes}\Omega^1\underset{A}{\otimes}\Omega^1\to\Omega^1$$

"
$$T_{\mu\nu\rho} \mapsto g^{\mu\nu} T_{\mu\nu\rho}$$
"

but

$$(\omega, g^1)g^2 = \omega \qquad g = g^1 \underset{A}{\otimes} g^2$$

$$\implies (\omega, g^1)g^2a = \omega a = (\omega a, g^1)g^2 = (\omega, ag^1)g^2$$

$$\implies ag = ga, \quad \forall a \in A \quad \text{need metric to be central}$$

Lemma: In our DGA a quantum metric has the form

$$g=(t^2+2\beta t+\lambda t+\alpha)\mathrm{d} r\otimes\mathrm{d} r-r(t+\beta)(\mathrm{d} r\otimes\mathrm{d} t+\mathrm{d} t\otimes\mathrm{d} r)+r^2\mathrm{d} t\otimes\mathrm{d} t$$
 (proof depends on $\wedge g=0, \quad [g,r]=[g,t]=0$)

* Algebras

work over C but specify real differential geometry via

- $*: A \rightarrow A$ antilinear involution `*-algebra'
- lacktriangle extends to graded-anti-algebra hom on $\Omega(A), \ [*, d] = 0$
- lacktriangle metric hermitian in sense $(*\otimes*)(g) = \mathrm{flip}(g)$

<u>Propn.:</u> In our DGA $r^* = r$, $t^* = t$, $\lambda^* = -\lambda$. A quantum metric has the unique form

$$g = dr \otimes dr + b(v^* \otimes v + \lambda(dr \otimes v - v^* \otimes dr))$$

$$v = rdt - tdr, \quad v^* = (dt)r - tdr \qquad b \in \mathbb{R} \quad b \neq 0$$

V CLASSICAL LIMIT $\lambda \to 0$

$$g = dr \otimes dr + bv \otimes v = (1 + bt^2)dr^2 + br^2dt^2 - 2brtdr dt$$

$$\Rightarrow \qquad \nabla \mathrm{d} r = \frac{2b}{r} v \otimes v, \quad \nabla v = -\frac{2}{r} v \otimes \mathrm{d} r \quad \leftrightarrow \quad \Gamma^a_{bc} \quad \begin{array}{c} \text{Christoffel} \\ \text{symbols} \end{array}$$

- Ricci = $\frac{g}{r^2}$ curvature singularity at r=0!
- Geodesic equations

$$\ddot{x}^a = -\Gamma^a_{bc} \dot{x}^b \dot{x}^c \implies M = r^2(r\dot{t} - t\dot{r})$$
 is a constant of motion

(a) b < 0 case:

timelike geodesics, with slope c at r=0 starting at $r=-D, \quad D=(-bM^2)^{\frac{1}{4}}$

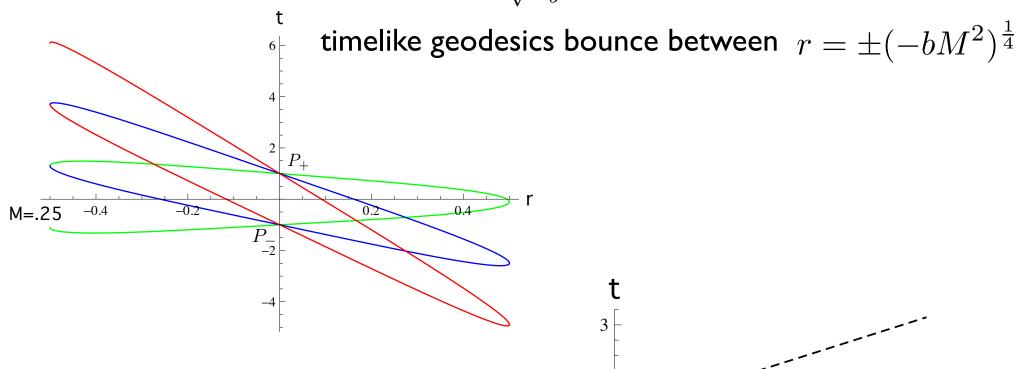
$$\tau(r) = D\gamma + DE(\frac{r}{D}) \quad \gamma = E(1) = \sqrt{\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} \approx 0.59907 \quad E(x) = \int_0^x \frac{u^2}{\sqrt{1 - u^4}} du$$

$$t_n(r) = rc - 2n\frac{M\gamma}{D^3}r - (-1)^n\frac{M}{D^2}\left(\sqrt{1 - (\frac{r}{D})^4} + \frac{r}{D}E(\frac{r}{D})\right), \quad \forall |r| \le D, \quad n \in \mathbb{Z},$$

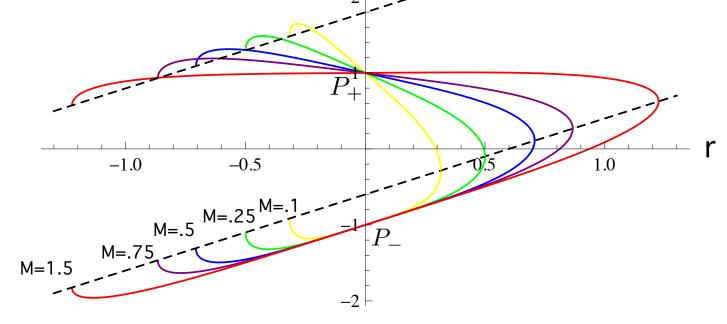
for the segment where

$$n2D\gamma \le \tau \le (n+1)2D\gamma.$$

All geodesics pass through $P_{\pm} = (0, \pm \frac{1}{\sqrt{-b}})$



and become null geodesics as $M \to \infty$



null geodesics slope c: t = rcM=-1, c=-10M=-1, c=10 4 M=-1, c=5M=-1, c=-5M=-1, c=0-0.2-0.40.2 0.4 M=1, c=0M=1, c=-5M=1, c=5

M=1, c=10

So even an outgoing photon bounces back in at $r = \infty$ black hole'

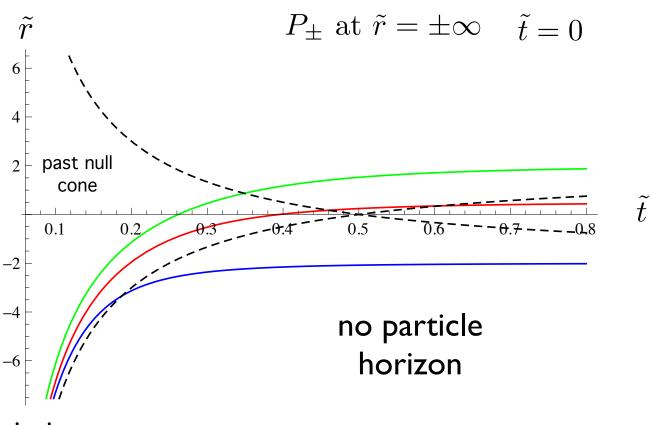
M=1, c=-10

(b)
$$b > 0$$
 case: use new FRW-like coordinates

$$ilde{t} = r, \quad ilde{r} = rac{t}{r}$$

$$g = -\mathrm{d}\tilde{t}^2 + R(\tilde{t})^2 \mathrm{d}\tilde{r}^2, \quad R(\tilde{t}) = \sqrt{b}\tilde{t}^2$$

All geodesics start/end on



ricci singularity

$$\tilde{t} = 0$$

Thm: no central metrics exist at all on this differential algebra

But can find central w.r.t. functions in $r = |\vec{x}|, t = 2$ -parameter family

$$g = r^{2} d\Omega + a dr \otimes dr + b \left(v^{*} \otimes v + \lambda (dr \otimes v - v^{*} \otimes dr)\right) \qquad a, b \in \mathbb{R}$$

$$= R_{ij} = R_{ij} - \frac{1}{2} S g_{ij} = \begin{pmatrix} \left(\frac{1}{a} - 1\right) b & \frac{(a-1)bt}{ar} & 0 & 0\\ \frac{(a-1)bt}{ar} & \frac{-a^2 - bt^2 a + 5a + bt^2}{ar^2} & 0 & 0\\ 0 & 0 & \frac{4}{a} & 0\\ 0 & 0 & 0 & \frac{4\sin^2(p)}{ar} \end{pmatrix}$$

- => null geodesics spiral out from r=0 to $r=0,\infty$ respectively.
- => metric conformal scaling of flat $\mathbb{R}^{1,3}$ metric in new coordinates.

VI QUANTUM RIEMANNIAN GEOMETRY

$$\begin{array}{ccc} \underline{\text{bimodule connection}} & \nabla: \Omega^1 \to \Omega^1 \underset{A}{\otimes} \Omega^1 & \sigma: \Omega^1 \underset{A}{\otimes} \Omega^1 \to \Omega^1 \underset{A}{\otimes} \Omega^1 \\ & \text{(Michor, Dubois-Violette)} \end{array}$$

$$\nabla(f\omega) = df \otimes \omega + f\nabla\omega \qquad \qquad \nabla(\omega f) = \sigma(\omega \otimes df) + (\nabla\omega)f$$

action on 2-tensor

$$\omega \otimes \eta \in \Omega^1 \underset{A}{\otimes} \Omega^1 \qquad \nabla(\omega \otimes \eta) = \nabla \omega \otimes \eta + (\sigma \otimes \mathrm{id})(\omega \otimes \nabla \eta)$$

metric
$$\nabla g = 0$$
 'metric compatible' now makes sense

torsion
$$T_{\nabla}: \Omega^1 \to \Omega^2$$
 $T_{\nabla} = \wedge \nabla - \mathrm{d}$ torsion free now makes sense

curvature
$$R_{\nabla}: \Omega^1 \to \Omega^2 \underset{A}{\otimes} \Omega^1$$

 $R_{\nabla} = (d \underset{A}{\otimes} id - (\wedge \underset{A}{\otimes} id)(id \underset{A}{\otimes} \nabla))\nabla$

reality
$$\nabla(\xi) = \sigma(\zeta^* \otimes \eta^*), \quad \forall \eta \otimes \zeta = \nabla(\xi^*)$$

on complex *-algebra

Method to find ∇ metric compatible

$$\nabla = \nabla_0 + \lambda \, \nabla_1 + O(\lambda^2) \qquad \nabla_0(dr) = \frac{2b}{r} \, v \otimes v, \quad \nabla_0(v) = -\frac{2}{r} \, v \otimes dr$$

$$\sigma(\omega \otimes da) = da \otimes \omega + [a, \nabla(\omega)] + \nabla([\omega, a]) \qquad \forall a \in A, \ \omega \in \Omega^1$$

to $O(\lambda)$ it is enough to calculate this using ∇_0

$$\Rightarrow \sigma(\mathrm{d}r \otimes \mathrm{d}t) = \mathrm{d}t \otimes \mathrm{d}r + [t, \nabla_0(\mathrm{d}r)] = \mathrm{d}t \otimes \mathrm{d}r + \frac{2b\lambda}{r}v \otimes v ,$$
$$\sigma(v \otimes \mathrm{d}t) = \mathrm{d}t \otimes v + [t, \nabla_0(v)] = \mathrm{d}t \otimes v - \frac{2\lambda}{r}v \otimes \mathrm{d}r .$$

$$\Rightarrow \begin{array}{l} \sigma(v \otimes v) = v \otimes v - 2 \lambda v \otimes \mathrm{d}r \;, \quad \sigma(\mathrm{d}r \otimes v) = v \otimes \mathrm{d}r + 2 b \lambda v \otimes v \\ \sigma(v \otimes \mathrm{d}r) = \mathrm{d}r \otimes v, \quad \sigma(\mathrm{d}r \otimes \mathrm{d}r) = \mathrm{d}r \otimes \mathrm{d}r \;. \end{array}$$

Combine this with the reality constraint:

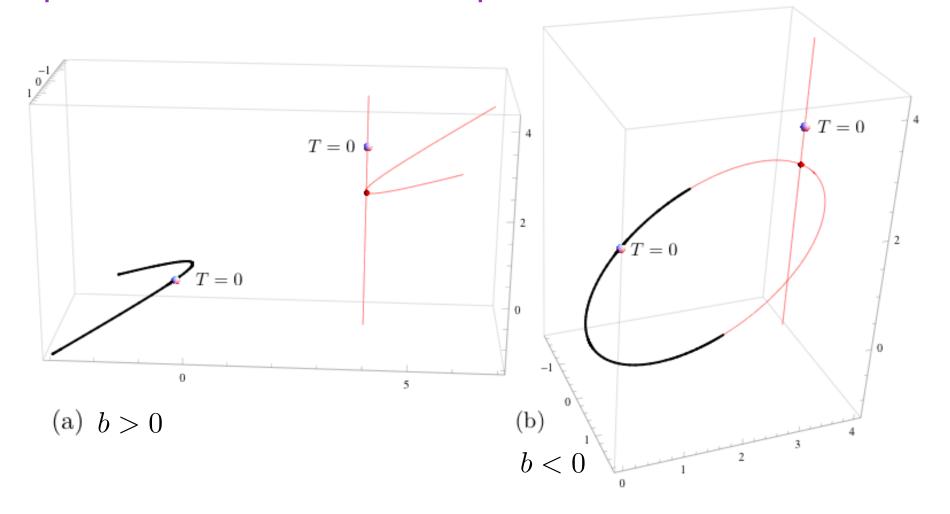
set
$$\eta_0 \otimes \zeta_0 = \nabla_0(\xi^*)$$
 and $\eta_1 \otimes \zeta_1 = \nabla_1(\xi^*)$.

$$\nabla_0(\xi) + \lambda \nabla_1(\xi) = \sigma(\zeta_0^* \otimes \eta_0^*) - \lambda \eta_1^* \otimes \zeta_1^* \qquad \qquad \xi^* = \xi \text{ to } O(\lambda^0)$$

$$\Longrightarrow \lambda\left(\eta_1\otimes\zeta_1+\eta_1^*\otimes\zeta_1^*\right)=\sigma(\zeta_0^*\otimes\eta_0^*)-\nabla_0(\xi)\quad \text{... so can solve this iteratively}$$

More generally, quadratic system for reality. Then impose metric compatibility

Propn. Moduli of real metric-compatible ∇ form a line + conic



- black parts have classical limit as $\lambda \to 0$
- lacktriangle red parts blow up as $\lambda \to 0$ so not visible classically
- in each case a unique `Levi-Civita point' where torsion T=0

Unique Levi-Civita soln with classical limit:

$$\nabla dr = \frac{1}{r} \left(v - \frac{\lambda dr}{2} \right) \otimes \left(\left(\frac{8b}{4 + 7b\lambda^2} \right) v - \left(\frac{12b\lambda}{4 + 7b\lambda^2} \right) dr \right)$$

Ricci =
$$\left(\frac{4+7b\lambda^2}{4-9b\lambda^2}\right)\frac{g}{r^2}$$

Ricci
$$-\frac{1}{(,)(g)}S = 0$$
, $S = (,)$ Ricci $(,)(g) = \frac{2 + b\lambda^2}{1 + b\lambda^2}$

$$(\ ,\)(g) = \frac{2+b\lambda}{1+b\lambda^2}$$

quantum dimension

`usual Einstein'
$$\operatorname{Ricci} - \frac{1}{2}S = b\lambda^2 \frac{g}{2r^2} + O(\lambda^3)$$

Aside: $Ricci = ((,) \otimes id)(id \otimes i \otimes id)((id \otimes R)(g))$

 $i:\Omega^2 \to \Omega^1 \otimes \Omega^1$ uniquely determined by $\wedge i=\mathrm{id}$ and requirement that Ricci has same symmetry and reality as metric

Unique Levi-Civita soln without classical limit:

$$\nabla dr = \frac{bv}{r} \otimes \left(\left(\frac{1}{1 + b\lambda^2} \right) v - \left(\frac{2}{\lambda} \right) dr \right) + \left(\frac{2 + b\lambda^2}{r(1 + b\lambda^2)} \right) dr \otimes \left(-\left(\frac{1}{\lambda} \right) v + \left(\frac{3}{2} \right) dr \right)$$

blows up as $\lambda \to 0$ and its

$$\label{eq:Ricci} \begin{split} \mathrm{Ricci} = -3 \frac{(4+3b\lambda^2)(-2+b\lambda^2)}{20r^2\lambda^2\left(1+b\lambda^2\right)} (v^* \otimes v + \lambda (\mathrm{d}r \otimes v - v^* \otimes \mathrm{d}r) \\ + \frac{\left(1+b\lambda^2\right)\left(14+3b\lambda^2\right)}{b\left(-2+b\lambda^2\right)} \mathrm{d}r \otimes \mathrm{d}r) \end{split}$$
 nothing like the metric

It all works in our 2D example of `quantum' Riemannian geometry, but the metric can't be flat and there is a second non-deformation solution for the Levi-Civita connection

VII SEMIQUANTISATION OF $C^{\infty}(M)$ w/ Beggs arXiv:1403.4231

$$a.b - b.a = \lambda \{a, b\} + O(\lambda^2)$$

 ω^{ij} Poisson tensor

$$a.db - (db).a = \lambda \nabla_{\hat{a}} db + O(\lambda^2)$$

 $\hat{a} = \{a, \}$ Hamilt. vec field

 ∇_i connection with torsion T

Thm (A): If
$$\omega_{;m}^{ij} + \omega^{ik}T_{km}^{j} - \omega^{jk}T_{km}^{i} = 0$$

 \exists noncomm. DGA $\Omega(A)$ to $O(\lambda)$, same d

Propn: The Poisson-compat, connection itself gets quantised to

a bimodule connection $\nabla_Q:\Omega^1\to\Omega^1\otimes_1\Omega^1$, $\sigma_Q:\Omega^1\otimes_1\Omega^1\to\Omega^1\otimes_1\Omega^1$

$$\nabla_{Q} dx^{i} = -\left(\Gamma_{mn}^{i} + \frac{\lambda}{2} \omega^{sj} (\Gamma_{mk,s}^{i} \Gamma_{jn}^{k} - \Gamma_{kt}^{i} \Gamma_{sm}^{k} \Gamma_{jn}^{t} - \Gamma_{jk}^{i} R^{k}{}_{nms})\right) dx^{m} \otimes_{1} dx^{n}$$

and has a quantum torsion

$$T_{\nabla_Q} \xi = \frac{1}{2} (\xi_i T_{nm}^i + \frac{\lambda}{2} (\partial_j \sqcup \nabla_i \xi) \omega^{is} T_{nm;s}^j) dx^m \wedge_1 dx^n$$

<u>Thm (B)</u>: ∃ monoidal functor to order λ (Q,q): Bundles w. Conn. \longrightarrow A-Bimod w. Bimod Conn.

Thm (C): suppose (ω, ∇) Poisson compat and metric $g, \nabla g = 0$. Let

$$\mathcal{R} = g_{ij}\omega^{is}(T^j_{nm;s} - 2R^j{}_{nms})\mathrm{d}x^m \wedge \mathrm{d}x^n \quad \text{`generalised Ricci form'}$$
$$g_1 := q^{-1}(g - \frac{\lambda}{4}g_{ij}\omega^{is}(T^j_{nm;s} - R^j{}_{nms} + R^j{}_{mns})\mathrm{d}x^m \otimes_0 \mathrm{d}x^n) \quad \text{`quant metric'}$$

- (I) g_1 is quantum symmetric and central
- (2) $\nabla_Q(g_1) = 0 \iff \nabla \mathcal{R} = 0$

Cor: If $\nabla = \widehat{\nabla}$ (the classical Levi-Civita) then ∇_Q is the quantum Levi-Civita iff $\mathcal{R} = -\frac{1}{2}g_{ij}\omega^{is}R^j{}_{nms}\mathrm{d}x^m\wedge\mathrm{d}x^n\in\Omega^2(M)$ is cov. constant.

Works any Kahler-Einstein manifold! eg $\mathbb{C}P^n$

Thm (D): $\exists !$ best possible quantum Levi-Civita ∇_1 in the sense torsion free and $\operatorname{sym}(\nabla_1 g_1) = 0$ Full $\nabla_1 g_1 = 0$ iff $\widehat{\nabla} \mathcal{R} + \omega^{ij} \, g_{rs} \, S^s_{jn} (R^r_{mki} + S^r_{km;i}) \, \mathrm{d}x^k \otimes \mathrm{d}x^m \wedge \mathrm{d}x^n = 0$ In this case ∇_1 is also *-preserving. $\widehat{\nabla} = \nabla + S$

- For given ω there may not exist zero curv ∇ => nonassociativity at $O(\lambda^2)$ in DGA
- Given (ω, ∇) there may not exist g such that $\nabla g = 0 =>$ quantum metric not central
- Given (ω, ∇, g) we have found an obstruction to construction of full quantum Levi-Civita

Works Schw BH: unique 4-funl param rotl invariant (ω, ∇) but they all have curvature and levi-civita obstruction