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One of the approaches to the theory describing Planck scale is
to consider noncommutative spacetimes and quantum
deformed symmetries.

Deformed Poincare (Hopf) algebra plays role of deformed
relativistic symmetry for such noncommutative spacetime.

One of the types of noncommutative spacetime is when
coordinates satisfy the particular Lie algebra type
commutation relations. It is called κ-Minkowski spacetime
and is covariant under the κ-deformed Poincare algebra as
deformed relativistic symmetry.
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1 cocycle twist F ∈ H ⊗ H fulfils the 2-cocycle and
normalization conditions:

F12(∆⊗ id)(F ) = F23(id ⊗∆)F , (ε⊗ id)(F ) = 1 = (id ⊗ ε)(F )

- provides standard deformation of classical Hopf algebras
leading to the coproducts: ∆F = F∆0F

−1

2 cochain twists - leads in general case to quasi-Hopf algebra
with universal R-matrix R: ∆op(a) = R∆(a)R−1 , a ∈ H;
with non-unital coassociator φ ∈ H ⊗ H ⊗ H (φ 6= 1⊗ 1⊗ 1)
modifying the quasi-triangularity relations for the universal
R-matrix as follows:

(∆⊗ id) (R) = φ312R13φ
−1
132R23φ123

(id ⊗∆) (R) = φ−1
231R13φ213R12φ

−1
123

For the cocycle twists : φ = 1⊗ 1⊗ 1
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Until now the universal R-matrix for κ-Poincaré Hopf algebra
is not known in D=2 and D=4.

The description of quantum deformation by twist provides
explicit formula for universal R-matrix.

It is commonly accepted that the 2-cocycle twist providing
κ-Poincaré Hopf algebra should not exist.

We will show that the coproducts of quantum κ-Poincaré
algebra (in the classical algebra basis) also can not be
obtained by the cochain (φ 6= 1⊗ 1⊗ 1) twist depending only
on Poincaré algebra generators.
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Let’s assume that κ-Poincaré-Hopf algebra Uκ(ĝ)
(ĝ = (Pµ,Mµν)) can be obtained from cochain twist:
F ∈ Uκ(ĝ)⊗ Uκ(ĝ) and that κ-deformed coproducts are of
the form: ∆κ = F∆0F

−1

We can expand the twist into the power series in 1
κ as follows

F = exp

(
1

κ
f1 +

1

κ2
f2 + O

(
1

κ3

))
(1)

This implies the following perturbative formula for the
deformed coproducts ∆ ∈ Uκ(ĝ)⊗ Uκ(ĝ)

∆F = F∆0F
−1 = ∆0 +

1

κ
∆1 +

1

κ2
∆2 + O

(
1

κ3

)
=

= ∆0 +
1

κ
[f1,∆0] +

1

2κ2
[f1, [f1,∆0]] +

1

κ2
[f2,∆0] + O

(
1

κ3

)
(2)
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I. D=2 κ−Poincaré algebra in bicrossproduct basis is described
by two-momentum generators Pµ = (P0,P1) and boost generator
N with properties:
i) algebra

[P0,P1] = 0 , [N,P0] = iP1

[N,P1] =
i

2
κ

(
1− exp

(
−2P0

κ

))
+

i

2κ
P2

1

ii) coalgebra

∆ (P0) = P0 ⊗ 1 + 1⊗ P0 , ∆ (P1) = P1 ⊗ 1 + exp

(
−P0

κ

)
⊗ P1

∆ (N) = N ⊗ 1 + exp

(
−P0

κ

)
⊗ N

We can derive D=2 quantum κ−Poincaré Hopf algebra in classical
basis from the following inverse quantum map

P0 =
κ

2

(
exp

(
P0

κ

)
− exp

(
−P0

κ

)
(1− 1

κ2
P2
1 )

)
, P1 = P1 exp

(
P0

κ

)
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D=2 quantum κ−Poincaré Hopf algebra in classical basis

[P0,P1] = 0 , [N,P0] = iP1 , [N,P1] = iP0

∆ (P0) = P0 ⊗ Π0 + Π−1
0 ⊗ P0 +

1

κ
P1Π−1

0 ⊗ P1

∆ (P1) = P1 ⊗ Π0 + 1⊗ P1

∆ (N) = N ⊗ 1 + Π−1
0 ⊗ N

where

Π0 =
1

κ
P0 +

√
1− 1

κ2
C0 , Π−1

0 =

√
1− 1

κ2C0 − 1
κP0

1− 1
κ2 P

2
1

with C0 describing the standard undeformed mass Casimir

C0 = P0P0 + P1P1 = −P2
0 + P2

1

and κ−deformed mass Casimir

C = κ2
(

Π0 + Π−1
0 − 2 +

1

κ2
P2
1Π−1

0

)
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We expand the coproducts in classical basis in powers of 1
κ using

Π0 = 1+
1

κ
P0−

1

2κ2
C0+O

(
1

κ3

)
, Π−1

0 = 1− 1

κ
P0+

1

κ2

(
P2
0 +

1

2
C0

)
+O

(
1

κ3

)
and get

∆κ (P0) = P0 ⊗ 1 + 1⊗ P0 +
1

κ
P1 ⊗ P1 +

+
1

κ2

(
P2
0 ⊗ P0 +

1

2
C0 ⊗ P0 −

1

2
P0 ⊗ C0 − P1P0 ⊗ P1

)
+ O

(
1

κ3

)
;

∆κ (P1) = P1 ⊗ 1 + 1⊗ P1 +
1

κ
P1 ⊗ P0 −

1

2κ2
P1 ⊗ C0 + O

(
1

κ3

)
;

∆κ (N) = N ⊗ 1 + 1⊗ N − 1

κ
P0 ⊗ N +

1

κ2

(
P2
0 ⊗ N +

1

2
C0 ⊗ N

)
+ O

(
1

κ3

)
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From ∆1 = [f1,∆0] and ∆1(N) = −P0 ⊗ N one can easily
calculate that:

f1 = −iP1 ⊗ N (3)

i.e. we get ’half’ of classical r-matrix because r = f1 − f T1 .

The equation determining the term f2 looks as follows:

∆2 =
1

2
[f1, [f1,∆0]] + [f2,∆0] (4)

where ∆2 are given explicitly by formulas from expanded
coproducts.

We shall show that such f2 which should provide 1
κ2 terms in

the coproducts does not exists.
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Let us notice that due to f1 = −iP1 ⊗ N we get
[f1, [f1,∆0 (N)]] = 0.

From ∆2 (N) = P2
0 ⊗ N + 1

2C0 ⊗ N we see that the left
factors of tensor product are quadratic in P and the right ones
the terms linear in N.

Such property due to ∆2 = 1
2 [f1, [f1,∆0]] + [f2,∆0] implies

that if f2 = Aα ⊗ Bα, the factors Aα have to be quadratic in
momenta and factors Bα linear in N.

In such circumstances the most general ansatz for f2 is the
following:

f2 = αP2
0 ⊗ N + βP2

1 ⊗ N + γP0P1 ⊗ N + f
(0)
2 (5)

where [f
(0)
2 ,∆0(N)] = 0.
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Using such f2 we get

∆2 (N) = α
[
P2
0 ,N

]
⊗ N + β

[
P2
1 ,N

]
⊗ N + γ [P0P1,N]⊗ N =

= −i ((2α + 2β)P0P1 + γ (P0P0 + P1P1))⊗ N

Comparing this result with ∆2 (N) = 1
2(P2

0 + P2
1 )⊗ N we

obtain that:

−iγ =
1

2
;α + β = 0

This implies that

f2 =
i

2
P0P1 ⊗ N + βC0 ⊗ N + f

(0)
2
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It is easy to see that for f2 = i
2P0P1 ⊗ N + βC0 ⊗ N + f

(0)
2 the

terms

P0 ⊗ C0 in

∆2 (P0) = P2
0 ⊗ P0 +

1

2
C0 ⊗ P0 −

1

2
P0 ⊗ C0 − P1P0 ⊗ P1

and P1 ⊗ C0 in

∆2 (P1) = −1

2
P1 ⊗ C0

cannot be obtained (for any f
(0)
2 ) from the formula

∆2 =
1

2
[f1, [f1,∆0]] + [f2,∆0]

In particular, the term P0 ⊗ P2
0 can never be obtained from the

commutator [f2,P0 ⊗ 1 + 1⊗ P0] for any choice of f2.
A similar argument one can use in D = 4 case.
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II. κ-Poincaré from twisting - D=4

[Mi ,Mj ] = iεijkMk , [Mi ,Nj ] = iεijkNk , [Ni ,Nj ] = −iεijkMk

[Mj ,Pk ] = iεjkiPi , [Mj ,P0] = 0 , [Nj ,P0] = iPj , [Ni ,Pj ] = iδijP0

∆ (P0) = P0 ⊗ Π0 + Π−1
0 ⊗ P0 +

1

κ
PkΠ−1

0 ⊗ Pk

∆ (Pk) = Pk ⊗ Π0 + 1⊗ Pk

∆ (Mi ) = Mi ⊗ 1 + 1⊗Mi

∆ (Ni ) = Ni ⊗ 1 + Π−1
0 ⊗ Ni −

1

κ
εikjPkΠ−1

0 ⊗Mj

where

Π0 =
1

κ
P0 +

√
1− 1

κ2
C0 , Π−1

0 =

√
1− 1

κ2C0 − 1
κP0

1− 1
κ2 P

2
1

We expand coproducts (Π0 and Π−1
0 ) in 1

κ power series as before,
with four-dimensional classical mass Casimir C0.
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Expanding these coproducts in 1
κ we get

∆ (P0) = P0 ⊗ 1 + 1⊗ P0 +
1

κ
Pk ⊗ Pk + (6)

+
1

κ2

(
P2
0 ⊗ P0 +

1

2
C0 ⊗ P0 − PkP0 ⊗ Pk −

1

2
P0 ⊗ C0

)
+ O

(
1

κ3

)
∆ (Pk) = Pk ⊗ 1 + 1⊗ Pk +

1

κ
Pk ⊗ P0 −

1

2κ2
Pk ⊗ C0 + O

(
1

κ3

)
(7)

∆ (Ni ) = Ni ⊗ 1 + 1⊗ Ni −
1

κ
(εikjPk ⊗Mj + P0 ⊗ Ni ) + (8)

+
1

κ2

((
P2
0 +

1

2
C0

)
⊗ Ni + εikjPkP0 ⊗Mj

)
+ O

(
1

κ3

)

Following the form of f1 in 2 dimensional case, one can postulate
the following formula for D=4 κ−deformation

f1 = −iPi ⊗ Ni (9)

One can check that with such f1 one gets correctly the linear terms
in the above coproducts (6)-(8).
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After using formulae ∆2 = 1
2 [f1, [f1,∆0]] + [f2,∆0] and ∆(P0) we

present the term ∆2 (P0) in two ways:

∆2 (P0) = −1

2
[Pi ⊗ Ni , [Pj ⊗ Nj ,P0 ⊗ 1 + 1⊗ P0]] + [f2,P0 ⊗ 1 + 1⊗ P0] =

=
1

2
~P2 ⊗ P0 + [f2,P0 ⊗ 1 + 1⊗ P0]

?
=

1

2

(
P0 ⊗ P2

0 + P2
0 ⊗ P0 + ~P2 ⊗ P0 − P0 ⊗ ~P2

)
− PkP0 ⊗ Pk (10)

In analogy to the case D=2 we can show that it is impossible to
find such f2 = Aα ⊗ Bα that leads to the validity of last equality in
(10) (we can not get from cochain twist the term P0 ⊗ P2

0 ).



16/16

C. Final remarks

Such cochain twist can be provided only if we enlarge the
Poincaré symmetries, in particular by the scale
transformations - identified with the dilatations generator D.
In such a way the twist F can be introduced as spanned by the
generators of the eleven-dimensional extension (Pµ,Mµν ,D)
of the D=4 Poincaré algebra called also D=4 Weyl algebra.

We did show as well the non-existence of cochain twist in the
standard non-classical basis of κ-Poincaré algebra.
It appears that our results are valid in arbitrary basis for
κ-Poincaré.


