One-parameter dependence of DeWitt's metric in Vilkoviski-DeWitt formalism

Artur Pietrykowski

BLTP, JINR, Dubna, Moscow Region, Russia ITP, University of Wroclaw, Poland

The First Polish Conference on Relativity

Spala, Poland, July 2nd, 2013

Effective Quantum Field Theories and Gravity

$$\int \mathcal{D}h_{\Lambda} \exp\left\{\int \mathrm{d}^4x\,\mathcal{L}(\ell,h)\right\} = \exp\left\{-\int \mathrm{d}^4x\,\mathcal{L}_{eff}(\ell,\Lambda)\right\}\,,$$

gdzie

$$\mathcal{L}(\ell,h) = \mathcal{L}_0(h) + \mathcal{L}_0(\ell) + \mathcal{L}_{\rm int}(h,\ell) \quad \rightarrow \quad \mathcal{L}_{eff}(\ell,\Lambda) = \mathcal{L}_0(\ell) + \sum_{i \in \mathbb{N}} c_i(\Lambda) \mathcal{O}^i(\ell) \; .$$

- Low energy dynamics (i.e., below a fundamental scale) does not depend on the details of a high energy one. The latter is encoded in coupling constants that accompany local vertices;
- Depending on the desired accuracy only a finite number of terms is required;
- Above a fundamental scale it is should be sewn with a more fundamental theory;

Effective Quantum Field Theories and Gravity

$$\int \mathcal{D} h_{\Lambda} \exp \left\{ \int \mathrm{d}^4 x \, \mathcal{L}(\ell,h) \right\} = \exp \left\{ - \int \mathrm{d}^4 x \, \mathcal{L}_{eff}(\ell,\Lambda) \right\} \, ,$$

gdzie

$$\mathcal{L}(\ell,h) = \mathcal{L}_0(h) + \mathcal{L}_0(\ell) + \mathcal{L}_{\rm int}(h,\ell) \quad \rightarrow \quad \mathcal{L}_{eff}(\ell,\Lambda) = \mathcal{L}_0(\ell) + \sum_{i \in \mathbb{N}} c_i(\Lambda) \mathcal{O}^i(\ell) \; .$$

- Low energy dynamics (i.e., below a fundamental scale) does not depend on the details of a high energy one. The latter is encoded in coupling constants that accompany local vertices;
- Depending on the desired accuracy only a finite number of terms is required;
- Above a fundamental scale it is should be sewn with a more fundamental theory;

Gravity as an Effective Field Theory

$$\mathcal{L}(g) = \Lambda + \frac{1}{\kappa^2} R + a_1 R_{\mu\nu}^2 + a_2 R^2 + a_3 M^{-2} R^3 + \dots$$

J. F. Donoghue, General Relativity as an effective field theory: the leading quantum corrections, Phys.Rev.D**50** (1994) 3874;

4 日 7 4回 7 4至 7 4至 7

Geometry of Configuration Space

Consider the theory with a gauge symmetry generated by $K^i_{\alpha}(\varphi) \in \mathsf{G}$, i.e.

$$\delta_{\xi}S[\varphi] = S_{,i}[\varphi]\delta_{\xi}\varphi^{i} = 0,$$

where

$$\delta_{\xi}\varphi^i=K^i_{\alpha}(\varphi)\delta\xi^{\alpha}, \qquad K^i_{\alpha}(\varphi)K^j_{\beta,i}(\varphi)-K^i_{\beta}(\varphi)K^j_{\alpha,i}(\varphi)=f^{\gamma}_{\alpha\beta}(\varphi)K^j_{\gamma}(\varphi).$$

Let the configuration field space $\mathcal F$ be a manifold endowed with a metric $\gamma(\varphi)$. Due to the underlying gauge symmetry it follows that

$$\mathrm{d}\varphi^i = \mathrm{d}\varphi^i_\perp + \mathrm{d}\varphi^i_\parallel, \quad \mathrm{d}\varphi^i_\parallel = K^i_\alpha(\varphi)\mathrm{d}\varepsilon^\alpha \quad \text{and} \quad \mathrm{d}\varphi^i_\perp = P^i_j\mathrm{d}\varphi^i,$$

where P^i_j is a projector on the space orthogonal to the gauge transformations. The metric on $\mathcal F$ can be cast into the form

$$\mathrm{d}s^2 = \gamma_{ij}\mathrm{d}\varphi^i\mathrm{d}\varphi^j = \gamma_{ij}^{\perp}\mathrm{d}\varphi_{\perp}^i\mathrm{d}\varphi_{\perp}^j + N_{\alpha\beta}\mathrm{d}\varepsilon^{\alpha}\mathrm{d}\varepsilon^{\beta},$$

where

$$N_{\alpha\beta} \equiv K_{\alpha}^{i} \gamma_{ij} K_{\beta}^{j}$$
 and $N_{\alpha\beta} N^{\beta\gamma} = \delta_{\alpha}^{\gamma}$, $\Rightarrow P_{j}^{i} = \delta_{j}^{i} - K_{\alpha}^{i} N^{\alpha\beta} K_{\beta}^{i} \gamma_{ij}$,

The metric on the orbit space \mathcal{F}/G *i.e.* physical field space is the following

$$\gamma_{ij}^{\perp} = \gamma_{ij} - \gamma_{ik} K_{\alpha}^k N^{\alpha\beta} K_{\beta}^l \gamma_{lj} \,.$$

Vilkoviski Configuration Field Space Connection

The connection that is compatible with the configuration space metric i.e. which satisfies the condition

$$\nabla_i \gamma_{jk}^{\perp} = 0$$

takes the form

$$\bar{\Gamma}^{i}_{kl} = {\Gamma_{kl}}^{i} + T^{i}_{kl},$$

where Γ_{kl}^{i} is the connection built with the full metric γ whereas the last term is defined as

$$T^i_{kl} = -2\gamma_{(k|r}K^r_\alpha N^{\alpha\beta}D_{l)}K^s_\beta + \gamma_{(k|r}K^r_\alpha N^{\alpha\beta}K^p_\alpha D_p K^s_\mu N^{\mu\nu}K^p_{\nu)}$$

The important property results

$$\gamma_{ij}^{\perp}K_{\alpha}^{j}=0=\gamma_{ij}^{\perp}\nabla_{k}K_{\alpha}^{j},\Rightarrow\nabla_{k}K_{\alpha}^{j}\sim K_{\mu}^{j}$$

Reparametrization Invariant Effective Action

The Vilkoviski-DeWitt Effective Action reads

$$\mathrm{e}^{-\Gamma_{\mathrm{VD}}[\bar{\phi}]} = \int \mathcal{D}\mu[\bar{\phi};\phi] \delta[\chi] \exp\left\{-S[\phi] - \sigma^{i}[\bar{\phi},\phi] C^{-1}{}_{i}^{j}[\bar{\phi}] \frac{\delta \Gamma_{\mathrm{VD}}[\bar{\phi}]}{\delta \bar{\phi}^{j}}\right\}$$

where $\sigma[\varphi, \phi] = 1/2$ (geodesic connecting φ and ϕ)² and

$$\mathcal{D}\mu[\bar{\phi};\phi] = \mathcal{D}\phi\sqrt{g[\phi]}\det Q[\bar{\phi},\phi], \ C^{-1}{}_{j}^{\ i}[\bar{\phi}] \approx \delta^{i}_{j} + \mathcal{R}^{i}{}_{kjl}[\phi]\langle\sigma^{k}[\bar{\phi},\phi]\sigma^{l}[\bar{\phi},\phi]\rangle + \dots$$

Quantity $\sigma^i[\bar{\phi},\phi]\equiv g^{ij}[\bar{\phi}]\delta\sigma[\bar{\phi},\phi]/\delta\bar{\phi}^j$ at $\bar{\phi}^i$ transforms as a vector whereas at ϕ^i as a scalar. Hence quantum gauge transformations are not affected by the presence of classical currents.

Due to the properties

$$K^k_{\alpha}\left[\bar{\phi}\right]\nabla_k\sigma^i\left[\bar{\phi},\phi\right]\sim K^k_{\ \beta}\left[\bar{\phi}\right],\quad\text{and}\quad K^k_{\ \alpha}\left[\phi\right]\frac{\delta}{\delta\phi^k}\sigma^i\left[\bar{\phi},\phi\right]\sim K^k_{\ \beta}\left[\bar{\phi}\right]$$

the VDEA is background gauge independet, i. e.

$$\Gamma_{\mathrm{VD},i}[\bar{\phi}]K^i_{\alpha}[\bar{\phi}] = 0.$$

One loop approximation to VDEA

The covariant expansion of the classical action reads

$$S[\phi] = \sum_{n \geq 0} \frac{(-1)^n}{n!} (\nabla_{i_1} \dots \nabla_{i_n} S[\bar{\phi}]) \sigma^{i_1} [\bar{\phi}, \phi] \dots \sigma^{i_n} [\bar{\phi}, \phi].$$

In the one loop approximation $C^{-1}_{j}^{i}[\bar{\phi}] \approx \delta^{i}_{j}$. Hence,

the one loop VDEA

$$\Gamma_{V\!D}^{(1)}[\bar{\phi}] = \frac{1}{2} \log \det \left(\nabla_i \nabla_j S[\bar{\phi}] + \frac{1}{\alpha} \chi_{,i}^{\mu}[\bar{\phi}] c_{\mu\nu} \chi_{,j}^{\nu}[\bar{\phi}] \right) - \log \det Q[\bar{\phi}] - \frac{1}{2} \log \det \gamma(\bar{\phi}),$$

Solution to the gauge-fixing dependence: Taking another gauge-fixing term $\chi'^{\alpha} = \chi^{\alpha} + \Delta \chi^{\alpha}$ we get

$$\delta_{\chi} \Gamma_{VD}[\bar{\phi}] = -G^{ij} S_{,k} \nabla_i K_{\alpha}^k Q_{\beta}^{-1\alpha} \Delta \chi_{,i}^{\beta} = 0 ,$$

that is the effective action is independent of the gauge fixing term.

In "the orthogonal gauge"

$$K_{\alpha}^{i}[\bar{\phi}]g_{ij}[\bar{\phi}]\sigma^{j}[\bar{\phi},\phi]=0$$

connection simplifies to the Christoffel one i.e. $\bar{\Gamma}^m_{ij} = \Gamma^m_{ij}$ and $T^i_{kl} = 0$;

Gravitational Configuration Field Space

The gravitational configuration field space $\mathcal F$ is endowed with one-parameter family of ultralocal metrics $(\varphi^i \to g_{\{x,\mu\nu\}} = g_{\mu\nu}(x))$

$$\gamma_{ij}(\varphi;a) \rightarrow \sqrt{g(x)} \, \mathcal{G}^{\mu\nu,\alpha\beta}(x;a) \bar{\delta}(x,x') = \sqrt{g(x)} \, \frac{1}{4} \left(2 g^{\mu(\alpha} g^{\beta)\nu} - a \, g^{\mu\nu} g^{\alpha\beta} \right) (x) \bar{\delta}(x,x'),$$

where $a \neq \frac{1}{2}$, 2. In the case of Einstein gravity metric can be chosen from the highest derivative term in the second order expansion of the action about a background configuration

$$S_{,ij} = \gamma_{ik} \mathcal{A}_j^k + \mathcal{C}_{ij} \nabla \nabla + \mathcal{B}_{ij} = P_i^k \gamma_{kl} P_j^l + \mathcal{B}_{ij},$$

where

$$\gamma_{ij} = \gamma_{ij}(\varphi; 1), \quad \mathcal{A}_j^k \to \delta_{\mu'\nu'}^{\alpha\beta} \Box \bar{\delta}(x, x'), \quad \mathcal{B}_{ij} \sim R_{..} \text{(curvatures in background fields)}.$$

Is it possible to change parametrization s.t.

$$\gamma_{ij}(\varphi; a) = \frac{\partial \varphi'^k}{\partial \varphi^i} \frac{\partial \varphi'^l}{\partial \varphi^j} \gamma_{kl}(\varphi'; 1)?$$

ANSWER: NO.

Vilkoviski-DeWitt (VDW) and parameter dependent metric

In principle one can choose any metric on \mathcal{F} . However, this leads to the one-parameter dependent results when VDW effective action is used. Indeed,

$$\begin{split} &\frac{1}{2} \log \det \left(\nabla_i(a) \nabla_j(a) S[\bar{\phi}] + \frac{1}{\alpha} \chi^{\mu}_{,i} [\bar{\phi};a] c_{\mu\nu} \chi^{\nu}_{,j} [\bar{\phi};a] \right) \\ &= \frac{1}{2} \log \det \left(\nabla_i \nabla_j S[\bar{\phi}] + \frac{1}{\alpha} \chi^{\mu}_{,i} [\bar{\phi}] c_{\mu\nu} \chi^{\nu}_{,j} [\bar{\phi}] \right) + (a-1) G^{ij} P^k_i H_{kl} P^l_j + \mathcal{O}((a-1)^2) \,, \end{split}$$

where

$$H_{kl} \equiv 2P_k^m \gamma_{mr} Q_s^r K_\alpha^s N^{\alpha\beta} K_\beta^p D_p D_n S P_j^n,$$

and

$$\gamma_{ij} = \gamma_{ik} \Pi^k_j + \gamma_{ik} Q^k_j, \quad \Pi^k_j \equiv \delta^k_j - Q^k_j, \quad Q^k_j \to \tfrac{1}{4} g_{\mu\nu} g^{\alpha\beta}.$$

Hence, H_{ij} does not vanish due to the presence of projector of symmetric tensor field on its trace Q_i^i .

The Scalar field interacting with Gravity

The action

$$S = -\frac{1}{\kappa^2} \int \mathrm{d}^n x \sqrt{\bar{g}} (\bar{R} - 2 \varLambda) + \int \mathrm{d}^n x \sqrt{\bar{g}} \left(\tfrac{1}{2} \bar{g}^{\mu\nu} \partial_\mu \bar{\varphi} \partial_\nu \bar{\varphi} + V(\bar{\varphi}) \right),$$

where

$$V(\bar{\varphi}) = \frac{1}{2}m^2\bar{\varphi}^2 + \frac{\lambda}{4!}\bar{\varphi}^4$$

Expansion of $S[g, \varphi]$ about the background field configuration yields:

$$\bar{g}_{\mu\nu}=g_{\mu\nu}+\kappa h_{\mu\nu}\quad {\rm i}\quad \bar{\varphi}=\varphi/\kappa+\phi.$$

Hence

$$\begin{split} S_{,ij} & \rightarrow & \frac{1}{2} h_{\mu\nu} \left(-\mathcal{G}^{\mu\nu,\alpha\beta} \Box - 2\mathcal{G}^{\mu\nu,\alpha\beta} \Lambda + X_{\varphi}^{\mu\nu,\alpha\beta} + X_{g}^{\mu\nu,\alpha\beta} \right) h_{\alpha\beta} - \frac{1}{2} C_{\mu}^{2} \\ & + \frac{1}{2} \phi \left(-\Box + m^{2} + \omega \varphi^{2} \right) \phi \quad \text{where} \quad \omega \equiv \lambda/2\kappa^{2} \\ & - h_{\mu\nu} Q^{\mu\nu,\alpha} \nabla_{\alpha} \phi + h_{\mu\nu} \left(\frac{1}{2} V'(\varphi) g^{\mu\nu} \right) \phi. \end{split}$$

Metric and Connection

The metric on ${\mathcal F}$

$$\mathrm{d}s^2 = \frac{1}{\kappa^2} \int \mathrm{d}^n x \sqrt{g} \, \mathcal{G}^{\mu\nu,\rho\sigma}(a) \mathrm{d}g_{\mu\nu}(x) \mathrm{d}g_{\rho\sigma}(x) + \int \mathrm{d}^n x \sqrt{g} \, \mathrm{d}\varphi(x) \mathrm{d}\varphi(x)$$

The Christoffel connection on ${\mathcal F}$

$$\begin{array}{lll} \Gamma^{\mu\nu,\rho\sigma}_{ \ \alpha\beta} & = & -\delta^{\mu\nu,\rho\sigma}_{\alpha\beta} + \frac{1}{4}(g^{\rho\sigma}\delta^{\mu\nu}_{\alpha\beta} + g^{\mu\nu}\delta^{\rho\sigma}_{\alpha\beta}) + \frac{1}{2(2a-1)}g_{\alpha\beta}\mathcal{G}^{\mu\nu,\rho\sigma}(a), \\ \Gamma^{\mu\nu,11}_{ \ 11} & = & \frac{1}{4}g^{\mu\nu}, \\ \Gamma^{11,11}_{ \ \mu\nu} & = & \kappa^2\frac{1}{2(2a-1)}g_{\mu\nu} \end{array}$$

Due to a background field independence of the VDEA we take flat background metric.

Metric and Connection

The metric on ${\mathcal F}$

$$\mathrm{d}s^2 = \frac{1}{\kappa^2} \int \mathrm{d}^n x \sqrt{g} \, \mathcal{G}^{\mu\nu,\rho\sigma}(a) \mathrm{d}g_{\mu\nu}(x) \mathrm{d}g_{\rho\sigma}(x) + \int \mathrm{d}^n x \sqrt{g} \, \mathrm{d}\varphi(x) \mathrm{d}\varphi(x)$$

The Christoffel connection on ${\mathcal F}$

$$\begin{array}{lcl} \Gamma^{\mu\nu,\rho\sigma}_{ \ \ \, \alpha\beta} & = & -\delta^{\mu\nu,\rho\sigma}_{\alpha\beta} + \frac{1}{4}(g^{\rho\sigma}\delta^{\mu\nu}_{\alpha\beta} + g^{\mu\nu}\delta^{\rho\sigma}_{\alpha\beta}) + \frac{1}{2(2a-1)}g_{\alpha\beta}\mathcal{G}^{\mu\nu,\rho\sigma}(a), \\ \Gamma^{\mu\nu,11}_{ \ \ \, 11} & = & \frac{1}{4}g^{\mu\nu}, \\ \Gamma^{11,11}_{ \ \ \, \mu\nu} & = & \kappa^2\frac{1}{2(2a-1)}g_{\mu\nu} \end{array}$$

Due to a background field independence of the VDEA we take flat background metric.

The β -function for φ^4 theory (MS)

$$\beta_{\lambda}(g) = \frac{1}{(4\pi)^2} \left[3\lambda^2 + 2\left(g_{\Lambda} - 4g_{m}\frac{4a - 3}{2a - 1}\right)g_{\kappa}\lambda \right]$$

Anomalous dimension for the mass operator (MS)

$$\gamma_m = \frac{1}{(4\pi)^2} \left[\left(1 - \frac{2g_\Lambda}{g_m} \right) \lambda + \frac{g_\kappa}{2a - 1} (8g_\Lambda - 5g_m) \right].$$

VD effective action and gravitational corrections

The action for the abelian YM theory

$$S = -\frac{\mu^{n-4}}{\kappa^2} \int \mathrm{d}^n x \sqrt{g} (R - 2\Lambda) + \frac{1}{4e^2} \mu^{n-4} \int \mathrm{d}^n x \sqrt{g} \bar{g}^{\mu\alpha} \bar{g}^{\nu\beta} \bar{F}_{\mu\nu} \bar{F}_{\alpha\beta}$$

Expanding about the background field configuration $\phi^i = \varphi^i + \eta^i$, where $\varphi^i = (g_{\mu\nu}, A_\alpha)$ and $\eta^i = (\kappa h_{\mu\nu}, a_\alpha)$ and taking one-parameter dependent metric on the full field space

$$\mathrm{d}s^2 = \frac{1}{\kappa^2} \int \mathrm{d}^n x \sqrt{g} \, \mathcal{G}^{\mu\nu,\rho\sigma}(a) \mathrm{d}g_{\mu\nu}(x) \mathrm{d}g_{\rho\sigma}(x) + \int \mathrm{d}^n x \sqrt{g} \, g^{\alpha\beta} \mathrm{d}A_\alpha(x) \mathrm{d}A_\beta(x),$$

VD effective action and gravitational corrections

The action for the abelian YM theory

$$S = -\frac{\mu^{n-4}}{\kappa^2} \int \mathrm{d}^n x \sqrt{g} (R-2\Lambda) + \frac{1}{4e^2} \mu^{n-4} \int \mathrm{d}^n x \sqrt{g} \bar{g}^{\mu\alpha} \bar{g}^{\nu\beta} \bar{F}_{\mu\nu} \bar{F}_{\alpha\beta}$$

Expanding about the background field configuration $\phi^i = \phi^i + \eta^i$, where $\phi^i = (g_{\mu\nu}, A_\alpha)$ and $\eta^i = (\kappa h_{\mu\nu}, a_\alpha)$ and taking one-parameter dependent metric on the full field space

$$\mathrm{d}s^2 = \tfrac{1}{\kappa^2} \int \mathrm{d}^n x \sqrt{g} \, \mathcal{G}^{\mu\nu,\rho\sigma}(a) \mathrm{d}g_{\mu\nu}(x) \mathrm{d}g_{\rho\sigma}(x) + \int \mathrm{d}^n x \sqrt{g} \, g^{\alpha\beta} \mathrm{d}A_\alpha(x) \mathrm{d}A_\beta(x),$$

and corresponding Christoffel connection

$$\begin{array}{lll} \Gamma^{\mu,\nu}_{\quad \alpha\beta} & = & \kappa^2 \delta^{\mu\nu}_{\alpha\beta} \, ; \\ \Gamma^{\nu,\alpha\beta}_{\quad \mu} & = & -\frac{1}{2a-1} g_{\mu\lambda} \mathcal{G}^{\lambda\nu,\alpha\beta} \, ; \end{array}$$

VD EA is background field independent, therefore we take $g_{\mu\nu} \to \delta_{\mu\nu}$. The form of the β function is

$$\beta(e) = -\frac{3}{2} \frac{a}{2a-1} \frac{\Lambda \kappa^2}{(4\pi)^2} e.$$

