
Superenergy tensors and their applications

José M M Senovilla

University of the Basque Country, Bilbao, Spain.

The 1st Conference of Polish Society on Relativity
Spała, 2nd July 2014



Outline

1 Introduction and Motivation

2 The classical developments

3 A general superenergy construction

4 Physical considerations

5 Applications
New conservation laws for electromagnetic field in gravity
Causal propagation of fields
Exchange and conservation of super-energy

6 Conclusions



Introduction

Equivalence principle =⇒ geometrization of gravity =⇒ there
is no local energy-momentum tensor of the gravitational field.

Gravitational energy is non-localizable .
Nevertheless, there are local tensors describing the strength of
the gravitational field.
the paradigmatic such tensor is the Bel-Robinson tensor
given in 4 dimensions by

Tαβλµ = CαρλσCβ
ρ
µ
σ + CαρµσCβ

ρ
λ
σ − 1

8
gαβgλµCρτσνC

ρτσν

Here, Cαρλσ is the Weyl tensor.
This formula is valid only in 4 dimensions (for general
dimension see later) and can be also written as

Tαβλµ = CαρλσCβ
ρ
µ
σ + ?Cαρλσ ? Cβ

ρ
µ
σ

where ? denotes the Hodge dual
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Introduction

One can prove that (in 4 dimensions):

Tαβλµ = T(αβλµ)

T ρρλµ = 0

TαβλµTγβλµ =
1
4
gαγTρβλµT ρβλµ

Tαβλµuαvβwλzµ ≥ 0

for arbitrary future-pointing vectors uα, vβ , wλ, and zµ

(inequality is strict if all of them are timelike). This is called
the Dominant property. (T0000 = 0 =⇒ Cαβλµ = 0).

∇αTαβλµ = 0

if the vacuum Einstein’s field equations Rβµ = Λgβµ hold.
This provides conserved quantities if there are (conformal)
Killing vector fields.
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Introduction: compare the electromagnetic field

Tµν = FµρFν
ρ − 1

4gµνFρσF
ρσ = 1

2 (FµρFνρ + ?Fµρ ? Fν
ρ)

Tµν = Tνµ

T ρρ = 0

TµρTν
ρ =

1
4
gµνTρσT

ρσ

Tµνu
µvν ≥ 0

for arbitrary future-pointing vectors uµ and vν (inequality is
strict if all of them are timelike). This is the Dominant energy
condition.
∇µTµν = Fνρj

ρ and therefore ∇µTµν = 0 if there are no
charge nor currents (jµ = 0).
This provides conserved quantities if there are (conformal)
Killing vector fields.
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Introduction: why Bel-Robinson?

The existence of the Bel-Robinson tensor has been a kind of a
mystery over the years

It is reminiscent of energy-momentum tensors, yet it is not
such a thing –it cannot be!
It has four indices, instead of the usual pair.
It looks related somehow to the energy-momentum properties
of the the gravitational field, but its physical dimensions (L−4)
are wrong
Thus, the name “super-energy” was coined by Bel.
The following scheme led to a series of interesting
developments

Tµν “superenergy”
Gravity NO YES

Physical fields YES ??
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Classical developments: Garecki’s canonical
supernergy tensors

A unified treatment, valid for the gravitational as well as other
physical fields has been elaborated and studied by Garecki.

The basic idea is to consider an average, over small regions, of
the relative differences between the energy-momentum
pseudo-tensor values (in normal coordinates)
The same can be done for the relative differences of the
energy-momentum tensors of non-gravitational fields.
There is a relation between this definition in the gravitational
case and the Bel-Robinson tensor.
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Classical developments: Bel tensor

A first step was immediately taken by Bel himself in 1958. The
Bel tensor, including matter:

Bαβλµ ≡ RαρλσRβ
ρ
µ
σ +RαρµσRβ

ρ
λ
σ − 1

2
gαβRρτλσR

ρτ
µ
σ

−1
2
gλµRαρστRβ

ρστ +
1
8
gαβgλµRρτσνR

ρτσν

(This is valid in general dimension n. Replacing R by C one
gets the Bel-Robinson in general n).

Bαβλµ = B(αβ)(λµ) = Bλµαβ

Bρ
ρλµ = 0 in n = 4.

Bαβλµu
αvβwλzµ ≥ 0 for arbitrary future-pointing vectors uα,

vβ , wλ, and zµ (inequality is strict if all of them are timelike).

∇αBαβλµ = Rβ λρ σJµσρ +Rβ µρ σJλσρ − 1
2g
λµRβρσγJσγρ where

Jλµβ ≡ ∇λRµβ −∇µRλβ (Compare with ∇µTµν = Fνρj
ρ).
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Next step: Chevreton tensor

The next step was taken by Chevreton in 1964, who tried to define
the super-energy tensor of the electromagnetic field.

Hαβλµ =
1
2

[
∇αFλρ∇βFµρ +∇λFαρ∇µFβρ

+∇λFβρ∇µFαρ +∇αFµρ∇βFλρ

−gαβ
(
∇σFλρ∇σFµρ +

1
2
∇λFσρ∇µF σρ

)
−gλµ

(
∇σFαρ∇σFβρ +

1
2
∇αFσρ∇βF σρ

)
+

1
2
gαβgλµ∇τFσρ∇τF σρ

]

(This is valid in general dimension n).
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(This is valid in general dimension n).



Properties of Chevreton tensor

Hαβλµ = H(αβ)(λµ) = Hλµαβ . Actually, Hαβλµ = H(αβλµ) in
n = 4.

Hρσ
ρσ = 0 in n = 4.

Hαβλµu
αvβwλzµ ≥ 0 for arbitrary future-pointing vectors uα,

vβ , wλ, and zµ (inequality is strict if all of them are timelike).
∇αHαβλµ 6= 0. (Long expression)
However, ∇αHαβλµ = 0 in flat spacetime!
In other words: Hαβλµ leads to conserved quantities in the
absence of gravitation. Recall that Bαβλµ led to conservation
currents in the absence of fields...
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A general superenergy construction

In 1999 I introduced a general definition of "super energy
tensor" (see CQG 17 (2000) 2799-2842)

Given any tensor field A, this provides the (essentially unique)
tensor T{A} quadratic in A with the dominant property.
This definition recovers the energy-momentum tensor of
classical fields, as well as the Bel-Robinson, Bel, and
Chevreton tensors:

1 electromagnetic field: the tensor A is Fµν

2 scalar field: the tensor A is ∇µφ,
3 for Bel-Robinson: the tensor A is Cαβµν

4 for Bel: the tensor A is Rαβµν

5 for Chevreton the tensor A is ∇λFµν
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An example: massless scalar field

Let φ be a massless scalar field.

using ∇µφ as seed tensor A the super-energy construction
provides the standard energy-momentum tensor

Tλµ{∇φ} = ∇λφ∇µφ−
1
2
gλµ∇ρφ∇ρφ

Tλµ{∇φ} = Tµλ{∇φ}
Tλµ{∇φ} satisfies the dominant energy condition.
∇µTµν{∇φ} = 0 if the field equation 2φ = 0 holds for φ.
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An example: superenergy tensor of scalar field

Using instead ∇µ∇νφ as seed tensor A one gets its
super-energy tensor :

Sαβλµ = ∇α∇λφ∇µ∇βφ+∇α∇µφ∇λ∇βφ−
−gαβ∇λ∇ρφ∇µ∇ρφ− gλµ∇α∇ρφ∇β∇ρφ

+
1
2
gαβgλµ∇σ∇ρφ∇σ∇ρφ .

Sαβλµ = S(αβ)(λµ) = Sλµαβ
One can actually use S(αβλµ) without loss of physical
generality (then, it is uniquely defined).
In general

∇αSαβλµ = 2∇β∇(λφRµ)ρ∇ρφ− gλµRσρ∇β∇ρφ∇σφ−
−∇σφ

(
2∇ρ∇(λφR

σ
µ)ρβ + gλµR

σ
ρβτ∇ρ∇τφ

)
Again, Sαβλµ is divergence-free in flat space-time, in the
absence of gravitational field.
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Physical considerations: units of superenergy
tensors

At the beginning, there was some confusion about the proper
physical units of the Bel-Robinson tensor

Its geometrical version has units of L−4, so it looks like
“energy density square”
One could actually think that this is a "square of an
energy-momentum tensor" —and this would actually explain
the "positivity"—. (Observe that some terms in the Bel tensor
are of type “Ricci2” ...
Nevertheless, this is not the right answer. The correct
possibility comes from splitting the L−4 into one
energy-density and a “pure L−2”.
The justification comes from the following facts:
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Units of Bel-Robinson: the small sphere limit

A first justification comes from the afore mentioned Garecki
approach.

Also: use any of the (many) definitions of quasilocal energy E
and apply to a very small sphere of radius r. Then one can
prove that at first non-trivial order in r one gets

E =
4π
3
r3T00 +O(r4)

where T00 is the timelike component of the energy-momentum
tensor (in a basis with ~e0 orthogonal to the sphere).
But, what happens if we are in vacuum? That is, if Tµν = 0.
Then, as first proven by Horowitz and Schmidt (1982)

E = (const.)r5T0000 +O(r6)

where T0000 is the timelike component of the Bel-Robinson
tensor (the “super-energy density”).
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Units of superenergy

Comparing both expressions, one derives [T ] = ML−3T−2

Thus, the physical super-energy tensor should be

c4

G
Tαβµν

Analogously, the gravitational energy-momentum vector of a
small sphere leads to T0i and, in vacuum, to T000i. The energy
flux of a gravitational plane wave, for instance, travels in the
direction of T000i.
Yet another, third, independent justification comes from the
work by Teyssandier (2000), who proved that the super-energy
of a quantized scalar field is interchanged in quanta of

~ω3
k/c

2

where ωk is the frequency of the k-mode.
Finally, the fact that the super-energy tensor of physical fields
contains two extra ∇µ with respect to the corresponding Tµν
supports this result.
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Further comments

As we have seen, the super-energy tensors for physical fields
can be put in physical correspondence with the super-energy
tensor of the gravitational field.

They are at the same “level”, carrying physical units of energy
density per unit surface
The analysis of the ‘strength’ of a field at points where its
energy density vanishes but such that every neighbourhood of
that point contains the field requires the super-energy concept
This is why the Bel-Robinson tensor arises naturally in General
Relativity, where the energy density of the gravitational field
can be always made to vanish at any point by appropriate
choice of the reference system — due to the equivalence
principle
Analogously, the wave-fronts, shock waves, and similar
propagating discontinuities can be properly analyzed from the
super-energy viewpoint
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Applications

The super-energy tensors, and in particular the Bel-Robinson
tensor, have been successfully used in many different
applications, and arises as a relevant tool in many
mathematical formalisms involving the gravitational field.

Outstanding cases are:

1 the hyperbolic formulations of the Einstein field equations,
2 the causal propagation of gravity and other fields,
3 the existence of global solutions of the Cauchy problem
4 the study of the global stability of spacetimes.
5 Rainich-like conditions
6 Causal (future and past) tensors
7 Propagation of fields discontinuities (characteristics and

bi-characteristics)
8 Supergravity, string theory and all that...
9 others to be detailed presently
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Application: new conservation laws for Fµν

Consider the trace of the Chevreton tensor Hµν = Hρ
ρµν .

We have

Hµν = ∇τFµρ∇τFνρ −
1
4
gµν∇τFρσ∇τF ρσ =

=
1
2

(∇τFµρ∇τFνρ +∇τ ? Fµρ∇τ ? Fνρ)

Thus, Hµν = Hνµ and Hρ
ρ = 0.

More importantly, for source-free Fµν : ∇µHµν = 0
This is valid

1 if the electromagnetic field is “test” (spacetime is vacuum with
a possible Λ).

2 In the full non-linear Einstein-Maxwell theory with a possible Λ.

Thus, given any conformal Killing vector ~ξ

Jµ(~ξ) ≡ Hµνξν ⇒ ∇µJµ = 0

=⇒ new conserved quantities in Einstein-Maxwell spacetimes
having ~ξ.
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Further properties of Hµν

One can prove that Hµν = 0 if and only if the full Chevreton
tensor is of pure radiation type Hαβµν ∝ `α`β`µ`ν for null `µ.

Then, the Petrov type is either N or 0 — in the former case
with `µ the principal null direction and Fµν null—, and Λ must
vanish.
For a general null Fµν , one has

Hµν = ∇ρ
[
`(µ∇ρ`ν) − `ρ∇(µ`ν) − `(µ∇ν)`ρ

]
.

A surprising property is that, in Einstein-Maxwell spacetimes,
Hµν is essentially the conformally well-behaved Bach tensor:

Bµν = 2Hµν +
2
3

ΛTµν

(recall: Bµν =
(
∇ρ∇σ − 1

2R
ρσ
)
Cµρνσ).
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Robinson-Trauman type-D solution with null Fµν

A type-D solution of Einstein-Maxwell eqs. with Λ:

ds2 = r2(dx2 + dy2)− 2dudr +
(

2m(u)
r

+
Λ
3
r2
)
du2

m(u)—the “mass”— is an arbitrary function with ṁ ≤ 0
The null electromagnetic field is given by F =

√
−2ṁ du ∧ dx

and its wave one-form is ` =
√
−2ṁ
r du

Using now the three Killing vectors ~ξi = {∂x, ∂y, y∂x − x∂y}
one can easily check that all the currents Tµνξνi are identically
vanishing
However, the divergence-free currents built with Hµν read

Jµ(ξi) = Hµ
νξ
ν
i = −2ṁ

r4
ξµi for all i = 1, 2, 3

and are non-vanishing in general
Thus, there are non-trivial conserved quantities involving the
physically relevant magnitude ṁ at the super-energy level.
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r du

Using now the three Killing vectors ~ξi = {∂x, ∂y, y∂x − x∂y}
one can easily check that all the currents Tµνξνi are identically
vanishing
However, the divergence-free currents built with Hµν read

Jµ(ξi) = Hµ
νξ
ν
i = −2ṁ
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Causal propagation of fields

Let S be any closed achronal set and D(S) its total Cauchy
development. Let wµ = −t,µ be any timelike 1-form foliating D(S)
with hypersurfaces t =const.

Theorem (Causal propagation)

If the super-energy tensor T ρµ1...λrµr {A} of any tensor field
Aµ1...µm satisfies the following divergence condition

∇ρT ρµ1...λrµrwµ1 . . . wλrwµr ≤ f T λ1µ1...λrµrwλ1wµ1 . . . wλrwµr

where f is a continuous function, then

Aµ1...µm |S = 0 =⇒ Aµ1...µm |D(S)
= 0.

Let us remark that a key point in the proof is the dominant
property, which in particular entails that the
super-energy-momentum vector P ρ = T ρµ1...λrµrwµ1 . . . wλrwµr is
future pointing.
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divergence-free in vacuum, one derives the causal propagation of
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What is important about "energy"?

The properties of energy that make it a fundamental quantity
in Physics are:

1 Positivity
2 Dominance
3 “Conservation”
4 Exchange between fields keeping conservation

Points 1 through 3 are kept by "superenergy" tensors! What
about 4?
Recall ∇αBαβλµ = 0 whenever Jλµβ = 0
Recall ∇αSαβλµ = 0 whenever Rαβλµ = 0
Can one combine the "super-energy" tensor for gravity and
physical fields with the aim of restoring conservation if
Jλµβ 6= 0?
Again, filling the gap:

Tµν “superenergy”
Gravity NO YES

Physical fields YES ??
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The Einstein-Klein-Gordon case

Consider a minimally coupled scalar field φ with mass m (m
can be zero), so that the Einstein field equations hold:

Rµν = ∇µφ∇νφ+
1

n− 2
m2φ2gµν

This implies the Klein-Gordon equation ∇ρ∇ρφ = m2φ.
Then, the matter current is

Jλµβ = 2∇β∇[λφ∇µ]φ+
4

n− 2
m2φ gβ[µ∇λ]φ

Thus, the divergence of the Bel tensor becomes in this case

∇αBα
βλµ = 2∇σφ∇ρ∇(λφR

σ
µ)ρβ

−gλµ∇σφ∇ρ∇τφRστρβ + 2∇σ∇ρφRβρσ(λ∇µ)φ

− 2
n− 2

m2φ
[

2∇σφRσ(λµ)β − 2∇βφ∇λφ∇µφ−

− 2
n− 2

m2φ2gβ(λ∇µ)φ+ gλµ∇βφ
(
∇ρφ∇ρφ+

1
n− 2

m2φ2

)]
.
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The Einstein-Klein-Gordon case

The super-energy tensor of the scalar field is given by

Sαβλµ = 2∇α∇(λφ∇µ)∇βφ− gαβ
(
∇λ∇ρφ∇µ∇ρφ+m2∇λφ∇µφ

)
−gλµ

(
∇α∇ρφ∇β∇ρφ+m2∇αφ∇βφ

)
+

1
2
gαβgλµ

(
∇σ∇ρφ∇σ∇ρφ+ 2m2∇ρφ∇ρφ+m4φ2

)

Its divergence reads

∇αSαβλµ = −2∇σφ∇ρ∇(λφR
σ
µ)ρβ + gλµ∇σφ∇ρ∇τφRστρβ +

+
(
∇ρφ∇ρφ+

1
n− 2

m2φ2

)(
2∇β∇(λφ∇µ)φ− gλµ∇β∇ρφ∇ρφ

)
.

One can then check that the direct sum Bαβλµ + Sαβλµ is not
divergence-free in general.
However, this is not relevant. Conservation arises if there are
symmetries!
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The Einstein-Klein-Gordon case

Assume ~ξ is a Killing vector. Then it is known that

ξµ∇µφ = 0,

it also follows that

ξβ∇ρφ∇β∇ρφ = 0

Then

ξβξλξµ∇αBα
βλµ=∇σφ (2∇ρ∇λφRσµρβ+gλµRσρβτ∇ρ∇τφ) ξβξλξµ,

ξβξλξµ∇αSαβλµ=−∇σφ (2∇ρ∇λφRσµρβ+gλµRσρβτ∇ρ∇τφ) ξβξλξµ

Hence:
ξβξλξµ∇α (Bα

βλµ + Sαβλµ) = 0.
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A mixed conserved current!

Using the symmetry properties of the super-energy tensors

∇α
[
(Bα

βλµ + Sαβλµ) ξβξλξµ
]

= 0

Observe that only the completely symmetric part of the
super-energy tensors is relevant here
Therefore, the super-energy currents

jα ≡ (Bαβλµ + Sαβλµ) ξβξλξµ

are divergence-free.
This leads to conservation via exchange of super-energy!
Actually, one can actually use any three Killing vectors (if they
are available) and the currents

jα ≡
(
B(αβλµ) + S(αβλµ)

)
ξβ1 ξ

λ
2 ξ

µ
3

are divergence-free in general.
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Conclusions and comments

There is a basically unique construction (valid for any seed
tensor, in arbitrary dimensions, independent of field equations)
providing super-energy tensors with the dominant property.

There are many applications: a recent one is the construction
of quality factors measuring the departure of any stationary
metric from the Kerr metric. (GRG 45 (2013) 1095-1127)
The correct physical dimensions for any given super-energy
density is energy density times L−2.
The most important point is that super-energy tensors give
rise to divergence-free currents if the field generating them is
isolated while these currents can be combined to produce
divergence-free currents mixing different fields in interaction.
Hence, the interchange of super-energy quantities (in a wide
sense: they can be super-momentum, or super-stresses etc.)
does happen, and the super-energy features can be transferred
from one field to another, such as energy properties do.
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¡Gracias!

Thank you for your attention

dziękuję !
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